留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微分干涉差共焦显微膜层微结构缺陷探测系统

戴岑 巩岩 张昊 李佃蒙 薛金来

戴岑, 巩岩, 张昊, 李佃蒙, 薛金来. 微分干涉差共焦显微膜层微结构缺陷探测系统[J]. 中国光学, 2018, 11(2): 255-264. doi: 10.3788/CO.20181102.0255
引用本文: 戴岑, 巩岩, 张昊, 李佃蒙, 薛金来. 微分干涉差共焦显微膜层微结构缺陷探测系统[J]. 中国光学, 2018, 11(2): 255-264. doi: 10.3788/CO.20181102.0255
DAI Cen, GONG Yan, ZHANG Hao, LI Dian-meng, XUE Jin-lai. Detection system of multilayer coating microstructure defects based on differential interference contrast confocal microscopy[J]. Chinese Optics, 2018, 11(2): 255-264. doi: 10.3788/CO.20181102.0255
Citation: DAI Cen, GONG Yan, ZHANG Hao, LI Dian-meng, XUE Jin-lai. Detection system of multilayer coating microstructure defects based on differential interference contrast confocal microscopy[J]. Chinese Optics, 2018, 11(2): 255-264. doi: 10.3788/CO.20181102.0255

微分干涉差共焦显微膜层微结构缺陷探测系统

doi: 10.3788/CO.20181102.0255
基金项目: 

吉林省重大科技攻关专项 20140203001GX

详细信息
    作者简介:

    戴岑(1991-), 女, 吉林省吉林市人, 硕士研究生, 主要从事激光共聚焦显微技术方面的研究。E-mail:daicen0916@126.com

    巩岩(1968—),男,吉林梅河口人,博士,研究员,主要从事短波光学、光学系统设计和成像光谱方面的研究。E-mail:ygong2000@sina.com

  • 中图分类号: TH742.6

Detection system of multilayer coating microstructure defects based on differential interference contrast confocal microscopy

Funds: 

Jilin Provincial Major S & T Special Project 20140203001GX

More Information
  • 摘要: 多层膜极紫外光刻掩模"白板"缺陷是制约下一代光刻技术发展的瓶颈之一,为提高对掩模"白板"上的膜层微结构缺陷的分辨能力,提出了一种微分干涉差共焦显微探测系统方案。基于标量衍射理论,计算了系统横向和轴向分辨率。利用MATLAB建模仿真,在数值孔径为0.65、工作波长为405 nm时,分析比较了微分干涉差共焦显微系统、传统显微系统和共焦显微系统的分辨率。结果表明微分干涉差共焦显微系统具有230 nm的横向分辨率和25 nm轴向台阶高度差的分辨能力(对应划痕等缺陷形式)。此外,仿真和分析了实际应用中探测器尺寸、样品轴向偏移等的影响,模拟分析了膜层微结构缺陷的探测,结果表明本系统可以探测200 nm宽、10 nm高的微结构缺陷,较另外两种系统有更好的探测能力。
  • 图  1  反射式DIC共焦系统光路图

    Figure  1.  Optical path diagram of reflecting DIC confocal system

    图  2  反射式DIC共焦系统等效光路图

    Figure  2.  Equivalent optical path of reflecting DIC confocal system

    图  3  共焦和DIC共焦系统归一化光强分布曲线

    Figure  3.  Uniformization intensity curves of confocal and DIC confocal system

    图  4  仿真算法示意简图

    Figure  4.  Schematic diagram of simulation algorithm

    图  5  不同的φ值对应的ΔI和Δθ变化关系

    Figure  5.  Relationship of ΔI and Δθ with different φ

    图  6  3种系统的横向归一化光强分布曲线对比

    Figure  6.  Comparison of uniformization lateral intensity distribution curves of 3 systems

    图  7  DIC共焦系统的台阶响应

    Figure  7.  Stair response curve of DIC confocal system

    图  8  (a) 探测器直径分别为2.5 μm, 1.67 μm, 1 μm时共焦系统的轴向光强响应曲线; (b)探测器直径为2.5 μm, 1 μm, 0.5 μm时的DIC共焦系统的台阶光强响应曲线

    Figure  8.  (a)Intensity curves of confocal system with detector diameter of 2.5 μm, 1.67 μm, 1 μm; (b)Intensity curves of DIC confocal systems with detector diameter of 2.5 μm, 1 μm, 0.5 μm

    图  9  不同轴向偏移时DIC共焦系统的台阶响应

    Figure  9.  Stair response curves of DIC confocal system under different z-axial offsets

    表  1  共焦和DIC共焦系统仿真值与理论值拟合结果

    Table  1.   Comparison between simulation and theoretical result of two systems

    系统名称 横向分布相关系数 轴向分布相关系数
    共焦系统 1 0.997 0
    DIC共焦系统 1 0.996 3
    下载: 导出CSV

    表  2  3个系统横向分辨率比较

    Table  2.   Comparison of lateral resolutions among the 3 systems

    (μm)
    系统名称 半高全宽(FWHM)
    传统显微镜 0.32
    共焦系统 0.23
    DIC共焦系统 0.23
    下载: 导出CSV

    表  3  共焦系统与DIC共焦系统镜面反射拟合结果

    Table  3.   Specular reflection fitting result of confocal and DIC confocal system

    系统名称 相关系数R
    共焦系统 0.997 2
    DIC共焦系统 0.996 8
    下载: 导出CSV

    表  4  图 9中各曲线与理论值拟合后的相关系数R

    Table  4.   Correlation coefficients(R) of fitting curves in Fig. 9

    样品轴向偏移/μm 相关系数R
    -0.3 0.998 5
    -0.15 0.999 1
    0 0.999 3
    0.15 0.999 1
    0.3 0.998 7
    下载: 导出CSV

    表  5  不同尺寸缺陷对应的归一化探测光强

    Table  5.   Uniformization intensity of micro-defects with different sizes

    z/nm d/nm
    200 240 280
    -20 1.141 0 1.254 2 1.280 5
    -10 1.066 8 1.125 0 1.138 1
    0 1.000 0 1.000 0 1.000 0
    10 0.942 2 0.880 0 0.867 6
    20 0.895 0 0.766 5 0.742 5
    下载: 导出CSV
  • [1] 刘晓雷, 李思坤, 王向朝.极紫外光刻含缺陷多层膜衍射谱仿真简化模型[J].光学学报, 2014, 34(9):40-46. http://www.opticsjournal.net/abstract.htm?aid=OJ0815000014jPmSpV

    LIU X L, LI S K, WANG X ZH. Simplified model for defective multilayer diffraction spectrum simulation in extreme ultraviolet lithography[J]. Acta Optica Sinica, 2014, 34(9):40-46.(in Chinese) http://www.opticsjournal.net/abstract.htm?aid=OJ0815000014jPmSpV
    [2] 张立超, 才玺坤, 时光.深紫外光刻光学薄膜[J].中国光学, 2015, 8(2):169-181. http://www.chineseoptics.net.cn/CN/abstract/abstract9262.shtml

    ZHANG L CH, CAI X K, SHI G. Optical coatings for DUV lithography[J]. Chinese Optics, 2015, 8(2):169-181.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9262.shtml
    [3] 刘晓雷, 李思坤, 王向朝.基于等效膜层法的极紫外光刻含缺陷掩模多层膜仿真模型[J].光学学报, 2015, 35(6):06220051-1-9. http://www.cqvip.com/QK/95626X/201506/665130710.html

    LIU X L, LI S K, WANG X ZH. Simulation model based on equivalent layer method for defective mask multilayer in extremeultra violet lithography[J]. Acta Optica Sinica, 2015, 35(6):06220051-1-9.(in Chinese) http://www.cqvip.com/QK/95626X/201506/665130710.html
    [4] 王珣, 金春水, 匡尚奇, 等.极紫外光学器件辐照污染检测技术[J].中国光学, 2014, 7(1):79-88. http://www.chineseoptics.net.cn/CN/abstract/abstract9099.shtml

    WANG X, JIN C SH, KUANG SH Q, et al.. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics, 2014, 7(1):79-88.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9099.shtml
    [5] KWON J, HONG J, KIM Y S, et al.. Atomic force microscope with improved scan accuracy, scan speed, and optical vision[J]. Review of Scientific Instruments, 2003, 74(10):4378-4383. doi: 10.1063/1.1610782
    [6] BINNG G, ROHRER H, GERBER CH, et al.. Surface studies by scanning tunneling microscopy[J]. Phys. Rev. Lett., 1982, 49(1):57-60 doi: 10.1103/PhysRevLett.49.57
    [7] 张运海, 杨皓旻, 孔晨晖.激光扫描共焦光谱成像系统[J].光学精密工程, 2014, 22(6):1446-1453. http://www.eope.net/gxjmgc/CN/abstract/abstract15267.shtml

    ZHANG Y H, YANG H M, KONG CH H. Spectral imaging system on laser scanning confocal microscopy[J]. Opt. Precision Eng., 2014, 22(6):1446-1453.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract15267.shtml
    [8] CHO W, KEARNEY P A, JEON C U, et al.. Inspection with the lasertec M7360 at the SEMATECH mask blank development center[J]. Proceedings of SPIE, 2007, 6517:65170D. https://www.spiedigitallibrary.org/redirect/proceedings/proceeding?doi=10.1117/12.712990
    [9] GODWIN M, BALACHANDRAN D, TAMURA T. Comparative defect classifications and analysis of Lasertec's M1350 and M7360[J]. Proceedings of SPIE, 2014, 9050:556-565 http://adsabs.harvard.edu/abs/2014SPIE.9050E..2ZG
    [10] TCHIKOULAEVA A, MIYAI H, TAKEHISA K, et al.. EUV actinic blank inspection:from prototype to production[J]. Proceedings of SPIE, 2013, 8679. https://www.spiedigitallibrary.org/redirect/proceedings/proceeding?doi=10.1117/12.2011776
    [11] RASTEGAR A, JINDAL V. EUV mask defects and their removal[J]. Proceedings of SPIE, 2012, 8352:83520W. doi: 10.1117/12.923882
    [12] SUZUKI T, MIYAI H, TAKEHISA K, et al.. EUV actinic blank inspection tool with a high magnification review mode[J]. Proceedings of SPIE, 2012, 8441:844115. doi: 10.1117/12.964983
    [13] 孙梦至, 王彤彤, 王延超, 等.大口径反射镜高反射膜研究进展[J].中国光学, 2016, 9(2):203-212. http://www.chineseoptics.net.cn/CN/abstract/abstract9405.shtml

    SUN M ZH, WANG T T, WANG Y CH, et al.. Research development of high reflecting coating for large-diameter mirror[J]. Chinese Optics, 2016, 9(2):203-212.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9405.shtml
    [14] 肖昀, 张运海, 王真, 等.入射激光对激光扫描共焦显微镜分辨率的影响[J].光学精密工程, 2014, 22(1):31-38. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_gxjmgc201401006

    XIAO Y, ZHANG Y H, WANG ZH, et al.. Effect of incident laser on resolution of LSCM[J]. Opt. Precision Eng., 2014, 22(3):31-38.(in Chinese) http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_gxjmgc201401006
    [15] WILSON T. Principles of three-dimensional imaging in confocal microscopes[J]. Journal of Microscopy, 1996, 193(1):91-92. doi: 10.1142/9789814261104_0007
    [16] PADDOCK S W. Confocal laser scanning microscopy[J]. Biotechniques, 1999, 27(5):992-1004. http://www.ncbi.nlm.nih.gov/pubmed/10572648
    [17] MEHTA S B, SHEPPARD C J. Partially coherent image formation in differential interference contrast(DIC) microscope[J]. Optics Express, 2008, 16(24):19462-19479. doi: 10.1364/OE.16.019462
    [18] SHEPPARD C J, WILSON T. Depth of field in the scanning microscope[J]. Optics Letters, 1978, 3(3):115-117. doi: 10.1364/OL.3.000115
    [19] COGSWELL C J, SHEPPARD C J R. Confocal differential interference contrast(DIC) microscopy:including a theoretical analysis of conventional and confocal DIC imaging[J]. Journal of Microscopy, 1992, 165(1):81-101. doi: 10.1111/jmi.1992.165.issue-1
    [20] 陈峻堂.微分干涉相衬显微术[J].光学仪器, 1984, 6(1):1-15 http://www.oalib.com/paper/5139827

    CHEN J T. Differential interference phase contrast microscopy[J]. Optical Instruments, 1984, 6(1):1-15.(in Chinese) http://www.oalib.com/paper/5139827
    [21] PADAWER J. The nomarski interference-contrast microscope. an experimental basis for image interpretation[J]. Journal Royal Microscopical Society, 1968, 88(88):305-49. http://www.ncbi.nlm.nih.gov/pubmed/4877018
    [22] CODY S H, XIANG S D, LAYTON M J, et al.. A simple method allowing DIC imaging in conjunction with confocal microscopy[J]. Journal of Microscopy, 2005, 217(3):265-74. doi: 10.1111/jmi.2005.217.issue-3
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  190
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-13
  • 修回日期:  2017-12-16
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回