留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞膜伪装的纳米载体用于光热治疗的研究进展

昝明辉 饶浪 谢伟 朱道明 郄兴旺 董文飞 刘威

昝明辉, 饶浪, 谢伟, 朱道明, 郄兴旺, 董文飞, 刘威. 细胞膜伪装的纳米载体用于光热治疗的研究进展[J]. 中国光学, 2018, 11(3): 392-400. doi: 10.3788/CO.20181103.0392
引用本文: 昝明辉, 饶浪, 谢伟, 朱道明, 郄兴旺, 董文飞, 刘威. 细胞膜伪装的纳米载体用于光热治疗的研究进展[J]. 中国光学, 2018, 11(3): 392-400. doi: 10.3788/CO.20181103.0392
ZAN Ming-hui, RAO Lang, XIE Wei, ZHU Dao-ming, QIE Xing-wang, DONG Wen-fei, LIU Wei. Advances in cell membrane-camouflaged nano-carrier for photothermal therapy[J]. Chinese Optics, 2018, 11(3): 392-400. doi: 10.3788/CO.20181103.0392
Citation: ZAN Ming-hui, RAO Lang, XIE Wei, ZHU Dao-ming, QIE Xing-wang, DONG Wen-fei, LIU Wei. Advances in cell membrane-camouflaged nano-carrier for photothermal therapy[J]. Chinese Optics, 2018, 11(3): 392-400. doi: 10.3788/CO.20181103.0392

细胞膜伪装的纳米载体用于光热治疗的研究进展

doi: 10.3788/CO.20181103.0392
基金项目: 

国家自然科学基金 61474084

详细信息
    作者简介:

    昝明辉(1988-), 男, 安徽阜阳人, 2015年于安徽师范大学获得硕士学位, 现为武汉大学在读博士生, 主要从事纳米材料的研究。E-mail:minghui_zan@163.com

    刘威(1979-), 男, 湖北天门人, 博士, 教授, 博士生导师, 国家自然科学基金优秀青年, 2003年获得武汉大学硕士学位, 2008年获得武汉大学博士学位, 主要从事纳米材料和微流体芯片与精密仪器的研究。E-mail:wliu@whu.edu.cn

  • 中图分类号: Q811;Q692

Advances in cell membrane-camouflaged nano-carrier for photothermal therapy

Funds: 

National Natural Science Foundation of China 61474084

More Information
  • 摘要: 纳米载体一直是肿瘤精准治疗的重要研究领域。其中以细胞膜伪装的纳米药物载体作为一种新颖的药物载体平台,在近年来已成为药物传递领域的研究热点。本文综述了不同种类细胞膜伪装的纳米载体应用于光热治疗的最新进展。将细胞膜与纳米材料结合起来,可进一步推进纳米载体的研究,这将对相关领域的发展产生重要影响。
  • 图  1  制备和功能化红细胞伪装在Fe3O4纳米颗粒表面(Fe3O4@RBC NPs)。(a)红细胞膜伪装在Fe3O4纳米颗粒制备过程。(b)未伪装的Fe3O4纳米颗粒被网状内皮系统吞噬。(c)Fe3O4@RBC NPs能网状内皮系统吞噬逃逸

    Figure  1.  Schematic of preparation and functionality of erythrocyte membrane-camouflaged Fe3O4 nanoparticles(Fe3O4@RBC NPs). (a)Preparation process of surface camouflage of Fe3O4 NPs with RBC membranes; (b)uncoated Fe3O4 NPs are phagocytized by the reticuloendothelial system; (c)Fe3O4@RBC NPs can escape the RES uptake

    图  2  微流控电穿孔促进合成RBC-MNs用于提高成像介导的癌症治疗。(a)使用微流控电穿孔合成RBC-MNs。(b)RBC-MNs从微流控芯片收集,经过血液循环后富集在肿瘤部位。(c)仿生RBC-MNs进一步用于提高肿瘤部位MRI核磁共振成像和PTT治疗

    Figure  2.  Microfluidic electroporation-facilitated synthesis of RBC-MNs for enhanced imaging-guided cancer therapy. (a)Microfluidic electroporation facilitates the synthesis of RBC-MNs; (b)subsequently, the RBC-MNs, which are collected from the microfluidic chip, enrich in the tumor site after the blood circulation; (c)biomimetic RBC-MNs are further used for enhanced in vivo tumor MRI and PTT

    图  3  血小板仿生纳米颗粒用来增强癌症成像和治疗。(A)血小板从小鼠血液中分离。(B,C)血小板膜囊泡随着膜蛋白质被收集并进一步包裹在Fe3O4纳米颗粒表面。(D)制备的PLT-MNs静脉注射到小鼠体内。(E,F)经系统循环后,PLT-MNs通过EPR效应富集在肿瘤部位。(G)由于PLTs的肿瘤靶向特性,PLT-MNs能靶向到肿瘤细胞。(H,I)为了利用MNs磁特性和光学吸收性质,我们将仿生PLT-MNs用于MRI和光热治疗

    Figure  3.  Platelet-mimicking magnetic nanoparticles for enhanced cancer imaging and therapy. (A)Platelets(PLTs) were separated from mice blood; (B, C)PLT membrane-derived vesicles(PLT-vesicles) along with the membrane proteins were collected from the PLTs and further coated onto Fe3O4 magnetic nanoparticles(MNs); (D)subsequently, the resulting PLT membrane-coated MNs(PLT-MNs) were intravenous (i.v.)injected back into the donor mice; (E, F)after systematic circulation, PLT-MNs enriched in the tumor site via the enhanced permeability and retention(EPR) effect; (G)attributed to the cancer targeting ability inherited from PLTs, PLT-MNs closely bonded to cancer cells; (H, I)to exploit the magnetic property and optical absorption ability of MNs, our biomimetic PLT-MNs were then used for enhanced in vivo tumor magnetic resonance imaging(MRI) and photothermal therapy(PTT)

    图  4  CC-NCNPs的制备、功能化和应用示意图

    Figure  4.  Schematic diagram of preparation, function and application of CC-UCNPs

  • [1] MITRAGOTRI S, BURKE PA, LANGER R. Overcoming the challenges in administering biopharmaceuticals:formulation and delivery strategies[J]. Nature Reviews Drug Discovery, 2014, 13(9):655-672. doi: 10.1038/nrd4363
    [2] MATSUMURA Y, MAEDA H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Research, 1986, 46(12 Part 1):6387-6392. http://cn.bing.com/academic/profile?id=bf77b5dc058644475ce5c6ff405be910&encoded=0&v=paper_preview&mkt=zh-cn
    [3] XIE J, XU C, KOHLER N, et al.. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells[J]. Advanced Materials, 2007, 19(20):3163-3166. doi: 10.1002/adma.200701975
    [4] PETROS R A, DESIMONE J M. Strategies in the design of nanoparticles for therapeutic applications[J]. Nature Reviews Drug Discovery, 2010, 9:615. doi: 10.1038/nrd2591
    [5] LIU Z, ROBINSON J T, SUN X, et al.. PEGylated nanographene oxide for delivery of water-Insoluble cancer drugs[J]. Journal of the American Chemical Society, 2008, 130(33):10876-10877. doi: 10.1021/ja803688x
    [6] ZHANG C Y, YEH H C, KUROKI M T, et al.. Single-quantum-dot-based DNA nanosensor[J]. Nature Materials, 2005, 4(11):826-831. doi: 10.1038/nmat1508
    [7] KNOP K, HOOGENBOOM R, FISCHER D, et al.. Poly(ethylene glycol) in drug delivery:pros and cons as well as potential alternatives[J]. Angewandte Chemie International Edition, 2010, 49(36):6288-6308. doi: 10.1002/anie.200902672
    [8] WILHELM S, TAVARES AJ, DAI Q, et al.. Analysis of nanoparticle delivery to tumours[J]. Nature Reviews Materials, 2016, 1(5):16014. doi: 10.1038/natrevmats.2016.14
    [9] WANG S, HUANG P, CHEN X. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization[J]. Advanced Materials, 2016, 28(34):7340-7364. doi: 10.1002/adma.201601498
    [10] HUANG C, YANG G, HA Q, et al. Multifunctional "smart" particles engineered from live immunocytes:toward capture and release of cancer cells[J]. Advanced Materials, 2015, 27(2):310-313. doi: 10.1002/adma.v27.2
    [11] TANG R, MOYANO DF, SUBRAMANI C, et al.. Rapid coating of surfaces with functionalized nanoparticles for regulation of cell behavior[J]. Advanced Materials, 2014, 26(20):3310-3314. doi: 10.1002/adma.v26.20
    [12] FANG R H, JIANG Y, FANG J C, et al.. Cell membrane-derived nanomaterials for biomedical applications[J]. Biomaterials, 2017, 128(Supplement C):69-83. http://cn.bing.com/academic/profile?id=e3696cec8291b081c454f71e90dbcd26&encoded=0&v=paper_preview&mkt=zh-cn
    [13] SUN H P, SU J H, MENG Q S, et al.. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer[J]. Advanced Functional Materials, 2017, 27(3):1604300-n/a. doi: 10.1002/adfm.v27.3
    [14] SUN H, SU J, MENG Q, et al.. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors[J]. Advanced Materials, 2016, 28(43):9581-9588. doi: 10.1002/adma.201602173
    [15] GAO W, HU C-M J, FANG R H, et al.. Surface functionalization of gold nanoparticles with red blood cell membranes[J]. Advanced Materials, 2013, 25(26):3549-3553. doi: 10.1002/adma.201300638
    [16] KROLL AV, FANG RH, ZHANG L. Biointerfacing and applications of cell membrane-coated nanoparticles[J]. Bioconjugate Chemistry, 2017, 28(1):23-32. doi: 10.1021/acs.bioconjchem.6b00569
    [17] LI S-Y, QIU W X, CHENG H, et al.. A versatile plasma membrane engineered cell vehicle for contact-cell-enhanced photodynamic therapy[J]. Advanced Functional Materials, 2017, 27(12):1604916-n/a. doi: 10.1002/adfm.v27.12
    [18] TIAN H, LUO Z, LIU L, et al.. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance[J]. Advanced Functional Materials, 2017, 27(38):1703197-n/a. doi: 10.1002/adfm.v27.38
    [19] FU Q, LV P, CHEN Z, et al.. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane[J]. Nanoscale, 2015, 7(9):4020-4030. doi: 10.1039/C4NR07027E
    [20] DEHAINI D, WEI X, FANG R H, et al.. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Advanced Materials, 2017, 29(16):1606209-n/a. doi: 10.1002/adma.201606209
    [21] CHEN Z, ZHAO P, LUO Z, et al.. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy[J]. ACS Nano, 2016, 10(11):10049-10057. doi: 10.1021/acsnano.6b04695
    [22] LUK B T, FANG R H, HU C-M J, et al.. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors[J]. Theranostics, 2016, 6(7):1004-1011. doi: 10.7150/thno.14471
    [23] SU J, SUN H, MENG Q, et al.. Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer[J]. Advanced Functional Materials, 2016, 26(8):1243-1252. doi: 10.1002/adfm.v26.8
    [24] LI S Y, CHENG H, XIE B R, et al.. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy[J]. ACS Nano, 2017, 11(7):7006-7018. doi: 10.1021/acsnano.7b02533
    [25] WANG X, LI H, LIU X, et al.. Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion[J]. Biomaterials, 2017, 143(Supplement C):130-141. http://cn.bing.com/academic/profile?id=d8ed9365d0b05aef02359485bc53cfa7&encoded=0&v=paper_preview&mkt=zh-cn
    [26] REN X, ZHENG R, FANG X, et al.. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy[J]. Biomaterials, 2016, 92(Supplement C):13-24. http://cn.bing.com/academic/profile?id=3c8c41999685f2c66f7ba9e881ad8b2e&encoded=0&v=paper_preview&mkt=zh-cn
    [27] ZHANG Z, WANG J, NIE X, et al.. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods[J]. Journal of the American Chemical Society, 2014, 136(20):7317-7326. doi: 10.1021/ja412735p
    [28] MELANCON M P, ZHOU M, LI C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles[J]. Accounts of Chemical Research, 2011, 44(10SI):947-956. http://cn.bing.com/academic/profile?id=83b56c30ef5304f92c08426f0a6e5fb1&encoded=0&v=paper_preview&mkt=zh-cn
    [29] CHENG L, GONG H, ZHU W, et al.. PEGylated prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy[J]. Biomaterials, 2014, 35(37):9844-9852. doi: 10.1016/j.biomaterials.2014.09.004
    [30] HU C-M J, ZHANG L, ARYAL S, et al.. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. Proceedings of the National Academy of Sciences, 2011, 108(27):10980-10985. doi: 10.1073/pnas.1106634108
    [31] LANG R, JUN-HUA X, BO C, et al.. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake[J]. Nanotechnology, 2016, 27(8):085106. doi: 10.1088/0957-4484/27/8/085106
    [32] RAO L, MENG Q F, HUANG Q, et al.. Photocatalytic degradation of cell membrane coatings for controlled drug release[J]. Advanced Healthcare Materials, 2016, 5(12):1420-1427. doi: 10.1002/adhm.201600303
    [33] RAO L, CAI B, BU L L, et al.. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy[J]. ACS Nano, 2017, 11(4):3496-3505. doi: 10.1021/acsnano.7b00133
    [34] RAO L, BU L L, MENG Q F, et al.. Antitumor platelet-mimicking magnetic nanoparticles[J]. Advanced Functional Materials, 2017, 27(9):1604774-n/a. doi: 10.1002/adfm.201604774
    [35] HU Q, SUN W, QIAN C, et al.. Anticancer platelet-mimicking nanovehicles[J]. Advanced Materials, 2015, 27(44):7043-7050. doi: 10.1002/adma.201503323
    [36] RAO L, BU L L, CAI B, et al.. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging[J]. Advanced Materials, 2016, 28(18):3460-3466. doi: 10.1002/adma.201506086
    [37] GAO W, FANG R H, THAMPHIWATANA S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles[J]. Nano Letters, 2015, 15(2):1403-1409. doi: 10.1021/nl504798g
    [38] GAO C, LIN Z, JURADO-SÁNCHEZ B, et al.. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery[J]. Small, 2016, 12(30):4056-4062. doi: 10.1002/smll.v12.30
    [39] GAO C, LIN Z, WU Z, et al.. Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2016, 8(50):34252-34260. http://cn.bing.com/academic/profile?id=efe298a12b0b619b18a0e69a3a6370c5&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(4)
计量
  • 文章访问数:  871
  • HTML全文浏览量:  226
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-11
  • 修回日期:  2018-03-08
  • 刊出日期:  2018-06-01

目录

    /

    返回文章
    返回