留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of 12 W high power and high reliability 915 nm semiconductor lasers

QIU Bo-cang MARTIN Hai HU WANG Wei-min LIU Wen-bin BAI Xue

仇伯仓, 胡海, 汪卫敏, 刘文斌, 白雪. 12 W高功率高可靠性915 nm半导体激光器设计与制作[J]. 中国光学, 2018, 11(4): 590-603. doi: 10.3788/CO.20181104.0590
引用本文: 仇伯仓, 胡海, 汪卫敏, 刘文斌, 白雪. 12 W高功率高可靠性915 nm半导体激光器设计与制作[J]. 中国光学, 2018, 11(4): 590-603. doi: 10.3788/CO.20181104.0590
QIU Bo-cang, MARTIN Hai HU, WANG Wei-min, LIU Wen-bin, BAI Xue. Design and fabrication of 12 W high power and high reliability 915 nm semiconductor lasers[J]. Chinese Optics, 2018, 11(4): 590-603. doi: 10.3788/CO.20181104.0590
Citation: QIU Bo-cang, MARTIN Hai HU, WANG Wei-min, LIU Wen-bin, BAI Xue. Design and fabrication of 12 W high power and high reliability 915 nm semiconductor lasers[J]. Chinese Optics, 2018, 11(4): 590-603. doi: 10.3788/CO.20181104.0590

12 W高功率高可靠性915 nm半导体激光器设计与制作

doi: 10.3788/CO.20181104.0590
基金项目: 

National High Technology Research and Development Program of China 2015AA016901

Innovative R & D Team Leadership of Guangdong Province Program 2011D040

Shenzhen City Peacock Program KQTD201106

详细信息
    作者简介:

    仇伯仓(1962-), 男, 陕西永寿县人, 博士, 研究员。1983年于西安交通大学获工学学士学位, 1986年于北京理工大学获得工学硕士学位, 1998年于英国格拉斯哥大学获得博士学位。现为深圳清华大学研究院高端半导体激光器研究中心设计专家, 深圳瑞波光电子有限公司设计总监, 主要从事半导体激光器方面的研究, 在行业内的顶级期刊与学术会议上共发表了110篇学术论文, 申请了14项发明专利。E-mail:qiubocang@raybowlaser.com

    白雪(1987—), 女, 山东莱芜人, 硕士, 工程师, 2009年、2012年于河南工业大学分别获得学士、硕士学位, 现为深圳瑞波光电子有限公司项目工程师, 主要从事半导体激光器方面的研究。E-mail:baixue@raybowlaser.com

  • 中图分类号: TN248.4

Design and fabrication of 12 W high power and high reliability 915 nm semiconductor lasers

Funds: 

National High Technology Research and Development Program of China 2015AA016901

Innovative R & D Team Leadership of Guangdong Province Program 2011D040

Shenzhen City Peacock Program KQTD201106

More Information
    Author Bio:

    QIU Bo-cang(1962—) received his bachelor's degree in engineering from Xi′an Jiaotong University in 1983, a master′s degree in engineering from Beijing Institute of Technology in 1986, and a doctor's degree from Glasgow University in England in 1998.He is currently a design expert for the Institute of High-end Semiconductor Laser Research of Shenzhen Tsinghua University and the design director of Shenzhen Raybow Optoelectronics Co., Ltd.He is mainly engaged in the research of semiconductor lasers.Dr.Qiu specializes in semiconductor optoelectronic devices, especially in semiconductor laser processes and designs.He has published 110 academic papers in the industry's top journals and academic conferences and applied for 14 invention patents. E-mail:qiubocang@raybowlaser.com

    BAI Xue(1987—) received her bachelor's degree from Henan University of Technology in 2009 and a master′s degree from Henan University of Technology in 2012.She is currently a project engineer at Shenzhen Raybow Optoelectronics Co., Ltd.and is mainly engaged in the research of semiconductor lasers.E-mail:baixue@raybowlaser.com

    Corresponding author: QIU Bo-cang, E-mail:qiubocang@raybowlaser.com
  • 摘要: 本文设计并制作了一种高效率、高可靠性的915 nm半导体激光器。半导体激光器是光纤激光器的关键部件,为了最大限度地提高器件的电光转换效率,在设计上采用双非对称大光腔波导结构,同时对量子阱结构、波导结构、掺杂以及器件结构进行了系统优化。器件模拟表明,在25℃环境温度下,器件的最高电光转换效率达到67%。采用金属有机气相沉积(MOCVD)法进行材料生长,随后制备了发光区域宽度为95 μm、腔长为4.8 mm的激光芯片。测试表明,封装后器件的效率以及其它参数指标达到国际先进水平,在室温下阈值电流为1 A,斜率效率为1.18 W/A,最高电光转换效率达66.5%,输出功率12 W时,电光转换效率达到64.3%,测试结果与器件理论模拟高度吻合。经过约6 000 h的寿命加速测试,器件功率没有出现衰减,表明制作的高功率915 nm激光芯片具有很高的可靠性。
  • 图  1  内量子效率与量子阱势垒材料Al组份含量之间的关系

    Figure  1.  Relationship between internal quantum efficiency and Al component content of quantum well barrier materials

    图  2  量子阱限制因子与SCH总厚度之间的关系

    Figure  2.  Quantum well confinement factor versus total SCH thickness

    图  3  光束发散角(FWHM)与SCH厚度之间的关系

    Figure  3.  Beam divergence(FWHM) versus total SCH thickness

    图  4  归一化的功率密度与SCH厚度之间的关系

    Figure  4.  Normalized power density versus total SCH thickness

    图  5  双非对称波导结构(线1)以及对应的光场分布(线2)

    Figure  5.  Double unsymmetrical waveguide structure(line 1) and corresponding light field distribution(line 2)

    图  6  远场分布计算结果

    Figure  6.  Profile of far-field distribution

    图  7  输出功率与腔长以及AR膜反射率之间的关系

    Figure  7.  Relationship between output power, cavity length and reflectivity of antireflection(AR) layer

    图  8  电光转换效率与腔长以及AR膜反射率之间的关系

    Figure  8.  Relationship between electro-optical conversion efficiency, cavity length, and reflectivity of antireflection(AR) layer

    图  9  915 nm单管COS模块在20 ℃下的光—电流曲线与电光转换效率曲线

    Figure  9.  Photocurrent curve and electro-optical conversion efficiency curve of 915 nm single-tube COS module at 20 ℃

    图  10  在准持续(QCW)以及持续(CW)条件下测试的腔面损伤功率

    Figure  10.  Cavity damage power tested under quasi-continuous(QCW) and continuous(CW) conditions

    图  11  95%能量所对应的光束发散角值

    Figure  11.  Beam divergence angle corresponding to 95% of the total energy

    图  12  寿命测试记录(器件初始功率为14 W, 测试温度为35 ℃, 电流为14 A)(见彩图)

    Figure  12.  Life test record(device initial power 14 W, test temperature 35 ℃, current 14 A)(colour figures is availabe in electro-version)

  • [1] STILES E. New developments in IPG fiber laser technology[C]. Proceedings of the 5th International Workshop on Fiber Lasers, Dresden, Germany, 2009.
    [2] VAISSIE L, STEELE T, RUDY P. High-power diode lasers advance pumping applications[J]. Laser Focus World, 2008, 44(6). https://www.photonicsonline.com/doc/high-power-diode-lasers-advance-pumping-0001
    [3] FAIRCLOTH B O. High-brightness high-power fiber coupled diode laser system for material processing and laser pumping[J]. Proceedings of the SPIE, 2003, 4973:34-41. doi: 10.1117/12.478365
    [4] 王鑫, 赵懿昊, 王翠鸾, 等.110 W高功率高亮度915 nm半导体激光器光纤耦合模块研究[J].发光学报, 2017, 38(12):1654-1660. http://file.bwt-bj.com/9xxnm%20200W%20%e9%ab%98%e5%8a%9f%e7%8e%87%e9%ab%98%e4%ba%ae%e5%ba%a6%e5%8d%8a%e5%af%bc%e4%bd%93%e6%bf%80%e5%85%89%e5%99%a8(3).pdf

    WANG X, ZHAO Y H, WANG C L, et al.. 110 W high power and high brightness 915 nm fiber coupled laser diode module[J]. Chinese Journal of Luminescence, 2017, 38(12):1654-1660.(in Chinese) http://file.bwt-bj.com/9xxnm%20200W%20%e9%ab%98%e5%8a%9f%e7%8e%87%e9%ab%98%e4%ba%ae%e5%ba%a6%e5%8d%8a%e5%af%bc%e4%bd%93%e6%bf%80%e5%85%89%e5%99%a8(3).pdf
    [5] 王立军, 宁永强, 秦莉, 等.大功率半导体激光器研究进展[J].发光学报, 2015, 36(1):1-19. http://www.cnki.com.cn/Article/CJFDTotal-FGXB201501002.htm

    WANG L J, NING Y Q, QIN L, et al.. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 36(1):1-19.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-FGXB201501002.htm
    [6] MORITA T, NAGAKURA T, TORⅡ K, et al.. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4):1502104. doi: 10.1109/JSTQE.2013.2245103
    [7] CRUMP P, BLUME G, PASCHKE K, et al.. 20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96μm[J]. Proceedings of the SPIE, 2009, 7198:719814. doi: 10.1117/12.807263
    [8] SCHULTZ C M, CRUMP P, WENZEL H, et al.. 11 W broad area 976 nm DFB laser with 58% power conversion efficiency[J]. Electronics Letters, 2010, 46(8):580-581. http://ieeexplore.ieee.org/abstract/document/5451018
    [9] CRUMP P, SCHULTZ C, PIETRZAK A, et al.. 975-nm high-power broad area diode lasers optimized for narrow spectral linewidth applications[J]. Processongs of SPIE, 2010, 7583:75830N-10. doi: 10.1117/12.839570
    [10] PETRESCU-PRAHOVA I B, MODAK P, GOUTAIN E, et al.. High d/gamma values in diode laser structures for very high power[J]. Proceedings of the SPIE, 2009, 7198:71981I-8. doi: 10.1117/12.810041
    [11] LOYO-MALDONADO V, BACCHIN G, ROBERTSON S, et al.. High reliability operation of 2 kW QCW 10-bar laser diode stacks at 808 nm[J]. Proc. of SPIE, 2009, 7198:71981E-8. doi: 10.1117/12.809321
    [12] KNAUER A, ERBERT G, STASKE R, et al.. High-power 808 nm lasers with a super-large optical cavity[J]. Semiconductor Science and Technology, 2005, 20(6):621-624. doi: 10.1088/0268-1242/20/6/024
    [13] AVRUTIN E A., RYYKIN B S. Thery and modelling of the power conversion efficiency of large optical cavity laser diodes[C]. 2015 High power diode lasers and systems conference(HPD), IEEE, Coventry, UK, 2015: 9-10.
    [14] QIU B C, MCDOUGALL S D, LIU X F, et al.. Design and fabrication of low beam divergence and high kink-free power lasers[J]. IEEE Journal of Quantum Electronics, 2005, 41(9):1124-1130. doi: 10.1109/JQE.2005.853359
    [15] TSAI C Y, TSAI CH Y, CHEN C H, et al.. Theoretical model for intravalley and intervalley free-carrier absorption in semiconductor lasers:beyond the classical drude models[J]. IEEE Journal of Quantum Electronics, 1998, 34(3):552-559. doi: 10.1109/3.661466
    [16] CHILD G N, BRAND S, ABRAM R A. Intervalence band absorption in semiconductor materials[J]. Semiconductor Science and Technology, 1986, 1:116-120. doi: 10.1088/0268-1242/1/2/004
    [17] CHUANG S L. Physics of Optoelectronic Devices[M]. New York:John Wiley & Son Inc, 1995.
    [18] 王文知, 井红旗, 祁琼, 等.大功率半导体激光器可靠性研究和失效分析[J].发光学报, 2017, 38(2):165-169. http://ir.semi.ac.cn/handle/172111/28126

    WANG W Z, JJING H Q, QI Q, et al.. Reliability test and failure analysis of high power semicounductor laser[J]. Chinese Journal of Luminescence, 2017, 38(2):165-169.(in Chinese) http://ir.semi.ac.cn/handle/172111/28126
  • 加载中
图(12)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  258
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 修回日期:  2018-02-12
  • 刊出日期:  2018-08-01

目录

    /

    返回文章
    返回