Correction of temperature measurement accuracy affected by internal temperature rise in uncooled thermal imager
-
摘要: 随着非制冷型热像仪工作时间的增长,其内部器件、机械结构所积累的热量越来越多,其温升所导致的热辐射势必会对热像仪的测温精度产生严重影响。因此,要实现热像仪的准确测温,必须对其内部的各温升影响因素进行相应的修正。本文通过对影响测温精度的镜筒辐射温度、探测器靶面温度以及热像仪工作累积时间三个因素进行评估和建模,并对其相互关系进行评价,根据数据模型对热像仪辐射测温值进行修正。结果表明,在实验室条件下,经过修正,非制冷型红外热像仪测温精度可控制在±1℃以内,其稳定性可控制在±0.5℃以内。修正后的温度结果基本不受内部温升的影响,有效的提高了非制冷测温型热像仪的稳定性、可重复性以及测温精度。Abstract: With the increase of the operating time of uncooled infrared thermal imager, the internal devices and mechanical structures accumulate more and more heat, and the thermal radiation caused by the temperature rise is bound to have serious effects on the accuracy of the thermal imager. Therefore, in order to achieve accurate temperature measurement of the thermal imager, it is necessary to correct the internal temperature influencing factors. This paper evaluates and models the three factors that affect the accuracy of temperature measurement:the barrel radiation temperature, the temperature of the target surface of the detector, and the cumulative working time of the thermal imager, and evaluates the relationship among them. Finally, the temperature measurement of the thermal imager is corrected according to the data model. The results show that under the laboratory conditions, the temperature accuracy of the uncooled infrared camera can be controlled within ±1℃, and its stability can be controlled within ±0.5℃. The corrected temperature is basically independent of the internal temperature rise, thus effectively improves the stability, repeatability, and accuracy of the temperature measurement of the uncooled thermal imager.
-
Key words:
- infrared thermal imager /
- uncooled /
- radiation temperature measurement
-
表 1 20 ℃至90 ℃范围内测量结果(单位:℃)
Table 1. Measurement results in the range of 20 ℃ to 90 ℃(unit: ℃)
设定值 20.0 25.0 30.0 35.0 40.0 均值 19.9 25.3 30.0 34.9 40.2 最小 19.5 25.1 29.8 34.7 40.1 最大 20.2 25.4 30.3 35.4 40.4 设定值 45.0 50.0 55.0 60.0 65.0 均值 44.7 50.2 55.0 60.0 64.7 最小 44.6 50.1 54.8 59.6 64.6 最大 44.9 50.2 55.2 60.1 64.9 设定值 70.0 75.0 80.0 85.0 90.0 均值 70.1 75.0 80.2 85.0 90.2 最小 69.9 74.9 80.1 84.9 90.1 最大 70.2 75.1 80.4 85.1 90.3 表 2 20 ℃至90 ℃范围内稳定性结果(单位:℃)
Table 2. Stabilization in the range of 20 ℃ to 90 ℃(unit: ℃)
设定值 20.0 25.0 30.0 35.0 40.0 稳定性 ±0.35 ±0.15 ±0.25 ±0.35 ±0.15 设定值 45.0 50.0 55.0 60.0 65.0 稳定性 ±0.15 ±0.05 ±0.2 ±0.25 ±0.15 设定值 70.0 75.0 80.0 85.0 90.0 稳定性 ±0.15 ±0.1 ±0.15 ±0.1 ±0.1 -
[1] 杨词银, 曹立华, 张建萍.基于大气实时修正的飞机辐射特性测量[J].光学 精密工程, 2014, 22(7):1751-1759. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201407007YANG C Y, CAO L H, ZHANG J P. Measurement of infrared radiation for target airplane based on real-time atmospheric correction[J]. Opt. Precision Eng., 2014, 22(7):1751-1759.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201407007 [2] 魏合理, 戴聪明.辐射特性测量大气传输修正研究:大气辐射传输模式和关键大气参数分析[J].红外与激光工程, 2014, 43(3):884-890. http://www.oalib.com/paper/4850747WEI H L, DAI C M. Research of atmospheric transfer correction in radiance measurement:atmospheric radiative transfer model and the analysis of key atmospheric parameters[J]. Infrared and Laser Engineering, 2014, 43(3):884-890.(in Chinese) http://www.oalib.com/paper/4850747 [3] 廖盼盼, 张佳民.红外测温精度的影响因素及补偿方法的研究[J].红外技术, 2017, 39(2):173-177. https://www.cnki.com.cn/lunwen-1014018692.htmlLIAO P P, ZHANG J M. Research on influence factors for measuring and method of correction in infrared thermometer[J]. Infrared Technology, 2017, 39(2):173-177.(in Chinese) https://www.cnki.com.cn/lunwen-1014018692.html [4] 孙志远, 朱玮, 乔彦峰.红外测温过程中灰度值漂移的修正[J].中国光学与应用光学, 2010, 3(4):391-395. https://www.ixueshu.com/document/d136cdad20a56c84318947a18e7f9386.htmlSUN ZH Y, ZHU W, QIAO Y F. Amendment of gray drift in infrared temperature measurement[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(4):391-395.(in Chinese) https://www.ixueshu.com/document/d136cdad20a56c84318947a18e7f9386.html [5] 石东平, 吴超, 李孜军, 等.基于反射温度补偿及入射温度补偿的红外测温影响分析[J].红外与激光工程, 2015, 44(8):2321-2326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201508015SHI D P, WU CH, LI Z J, et al.. Analysis of the influence of infrared temperature measurement based on reflected temperature compensation and incidence temperature compensation[J]. Infrared and Laser Engineering, 2015, 44(8):2321-2326.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201508015 [6] 周康康, 黄波利, 崔敬巍, 等.基于红外热图像灰度修正的辐射测温[J].激光与红外, 2016, 46(1):58-61. http://www.ixueshu.com/document/5c928119fa306dce318947a18e7f9386.htmlZHOU K K, HUANG B L, CUI J W, et al.. Radiation thermometry based on infrared thermal image gray correction[J]. Laser & Infrared, 2016, 46(1):58-61.(in Chinese) http://www.ixueshu.com/document/5c928119fa306dce318947a18e7f9386.html [7] 陆子凤, 潘玉龙, 王学进, 等.目标到测试系统距离对红外测温精度的影响[J].红外技术, 2008, 30(5):271-274, 278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb2006z1026LU Z F, PAN Y L, WANG X J, et al.. Influence of object-system distance on accuracy of temperature measurement with IR system[J]. Infrared Technology, 2008, 30(5):271-274, 278.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb2006z1026 [8] 孙志远, 王晶, 乔彦峰.环境对中波红外探测器测温精度的影响[J].中国光学与应用光学, 2010, 3(6):659-664. http://www.cqvip.com/QK/60129X/201006/36666639.htmlSUN ZH Y, WANG J, QIAO Y F. Influence of environment on temperature measurement precision based on middle-wave IRFPA[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(6):659-664.(in Chinese) http://www.cqvip.com/QK/60129X/201006/36666639.html [9] 王超群, 崔昊杨, 许永鹏, 等.视场超出目标的红外测温误差修正方法研究[J].激光与红外, 2015, 45(10):1211-1215. doi: 10.3969/j.issn.1001-5078.2015.10.013WANG CH Q, CUI H Y, XU Y P, et al.. Error correction of infrared temperature measurement as FOV larger than target[J]. Laser & Infrared, 2015, 45(10):1211-1215.(in Chinese) doi: 10.3969/j.issn.1001-5078.2015.10.013 [10] 张晓龙, 刘英, 孙强.高精度非致冷长波红外热像仪的辐射标定[J].中国光学, 2012, 5(3):235-241. http://www.chineseoptics.net.cn/CN/abstract/abstract8826.shtmlZHANG X L, LIU Y, SUN Q. Radiometric calibration of uncooled long-wave infrared thermal imager with high-precision[J]. Chinese Optics, 2012, 5(3):235-241.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8826.shtml [11] 王飞, 戢运峰, 冯刚, 等.红外焦平面阵列非线性校正曲线测量方法[J].中国光学, 2014, 7(1):144-149. http://www.chineseoptics.net.cn/CN/abstract/abstract9108.shtmlWANG F, JI Y F, FENG G, et al.. Method for measuring nonlinear calibrated curve of infrared focal plane arrays[J]. Chinese Optics, 2014, 7(1):144-149.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9108.shtml [12] 李宁, 张云峰, 刘春香, 等.1 m口径红外测量系统的辐射定标[J].光学 精密工程, 2014, 22(8):2054-2060. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201408011LI N, ZHANG Y F, LIU CH X, et al.. Calibration of 1 m aperture infrared theodolite[J]. Opt. Precision Eng., 2014, 22(8):2054-2060.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201408011 [13] 常松涛, 孙志远, 张尧禹, 等.基于点扩散函数的小目标辐射测量[J].光学 精密工程, 2014, 22(11):2879-2887. http://www.oalib.com/paper/4854177CHANG S T, SUN ZH Y, ZHANG Y Y, et al.. Radiation measurement of small targets based on PSF[J]. Opt. Precision Eng., 2014, 22(11):2879-2887.(in Chinese) http://www.oalib.com/paper/4854177 [14] 郭立红, 郭汉洲, 杨词银, 等.利用大气修正因子提高目标红外辐射特性测量精度[J].光学 精密工程, 2016, 24(8):1871-1877. http://www.cqvip.com/QK/92835A/201608GUO L H, GUO H ZH, YANG C Y, et al.. Improvement of radiation measurement precision for target by using atmosphere-corrected coefficients[J]. Opt. Precision Eng., 2016, 24(8):1871-1877.(in Chinese) http://www.cqvip.com/QK/92835A/201608 [15] 常本康, 蔡毅.红外成像阵列与系统[M].北京:科学出版社, 2006.CHANG B K, CAI Y. Infrared Imaging Array and System[M]. Beijing:Science Press, 2006.(in Chinese)