留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical coatings for projection objective immersion lithography

BI Dan-dan ZHANG Li-chao SHI Guang

毕丹丹, 张立超, 时光. 浸没式光刻投影物镜光学薄膜[J]. 中国光学(中英文), 2018, 11(5): 745-764. doi: 10.3788/CO.20181105.0745
引用本文: 毕丹丹, 张立超, 时光. 浸没式光刻投影物镜光学薄膜[J]. 中国光学(中英文), 2018, 11(5): 745-764. doi: 10.3788/CO.20181105.0745
BI Dan-dan, ZHANG Li-chao, SHI Guang. Optical coatings for projection objective immersion lithography[J]. Chinese Optics, 2018, 11(5): 745-764. doi: 10.3788/CO.20181105.0745
Citation: BI Dan-dan, ZHANG Li-chao, SHI Guang. Optical coatings for projection objective immersion lithography[J]. Chinese Optics, 2018, 11(5): 745-764. doi: 10.3788/CO.20181105.0745

浸没式光刻投影物镜光学薄膜

基金项目: 

国家科技重大专项资助项目 2009ZX02205

详细信息
    作者简介:

    毕丹丹(1992-), 女, 吉林省吉林市人, 硕士研究生, 现为中国科学院长春光学精密机械与物理研究所在读硕士, 主要从事光学薄膜技术方面的研究。E-mail:bidandan15@mails.ucas.ac.cn

    张立超(1979—),男,吉林省吉林市人,博士,研究员,2000年、2003年于吉林大学分别获得学士、硕士学位,2007年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学薄膜技术方面的研究。E-mail:zhanglic@klao.ac.cn

    时光(1985—),女,黑龙江省鸡西人,硕士,助理研究员,2008年、2011年于电子科技大学分别获得学士、硕士学位,主要从事深紫外光学薄膜方面的研究。E-mail:nrconnie@163.com

  • 中图分类号: O484

Optical coatings for projection objective immersion lithography

doi: 10.3788/CO.20181105.0745
Funds: 

the National Science and Technology Major Project of the Ministry of Science and Technology of China 2009ZX02205

More Information
    Author Bio:

    BI Dan-dan(1992—), female, born in the city of Jilin, Jilin Province, who is a master-degree student studying at Changchun Institute of Optics, Fine Mechanics and Physics under Chinese Academy of Sciences and is mainly engaged in the optical coating technology research. E-mail:bidandan15@mails.ucas.ac.cn

    ZHANG Li-chao(1979—), male, born in the city of Jilin, Jilin Province, who is a doctor-degree researcher with bachelor and master degrees from Jilin University obtained respectively in 2000 and 2003 as well as the doctor degree from Changchun Institute of Optics, Fine Mechanics and Physics under Chinese Academy of Sciences and is mainly engaged in the optical coating technology research. E-mail: zhanglic@klao.ac.cn

    SHI Guang(1985—), female, born in the city of Jixi, Heilongjiang Province, who is an assistant researcher with bachelor and master degrees from University of Electronic Science and Technology of China obtained respectively in 2008 and 2011 and is mainly engaged in the deep ultraviolet optical coating research. E-mail:nrconnie@163.com

    Corresponding author: ZHANG Li-chao, E-mail:zhanglc@sklao.ac.cn
  • 摘要: 深紫外光刻是目前集成电路制造的主流方法,为实现更小的元件特征尺寸,必须采用浸没式投影物镜以提高光学系统的分辨率,由此向其中的薄膜光学元件提出了众多苛刻的要求。本文介绍了适用于浸没式光刻系统的薄膜材料及膜系设计,以及高NA光学系统所需的大角度保偏膜系;对物镜中最关键的浸液薄膜的液体环境适应性、疏水及防污染等关键问题进行了讨论;对衡量浸没式光刻系统性能的重要因素镀膜元件激光辐照寿命,尤其是浸液环境下的元件辐照寿命进行了分析。

     

  • 图 1  五层减反射膜系反射率与最外层材料折射率的关系。五层膜系,其中仅最外层材料折射率发生变化

    Figure 1.  Simulated relation between the refractive index of the top layer of an five-layer-antireflective coating and the reflectance. stack, five layers(only the refractive index of the top layer was changed)

    图 2  两种溶胶(MgF2和SiO2)不同Si/Mg摩尔比混合实现可调折射率

    Figure 2.  Realization of the adjustable refraction index with mixture of two sols (MgF2 and SiO2) at different Si/Mg molar ratios

    图 3  (a)常用光刻物镜下窗口元件;(b)膜层材料的接触角

    Figure 3.  (a) Last optical element of the lithography objective; (b)Contact angle of the film layer material

    图 4  通过表面修饰提高材料表面疏水性能

    Figure 4.  Increase of the material surface hydrophobicity with surface trimming

    图 5  激光辐照过程中在线透过率检测光路图

    Figure 5.  Optical path of in-situ transmission measurement while laser irradiation

    图 6  元件不可逆损伤的数值与重复频率、能量密度的关系

    Figure 6.  Relationship between the value of irreversible component damage and the repetitive frequency and energy density

    图 7  (a)镀膜元件在激光辐照后的空间Delta分布;(b)激光辐照样品

    Figure 7.  (a) Delta space distribution for the film-coated component after laser irradiation; (b)Laser irradiation sample

    图 8  膜层动态减薄模型透过率(实线)与辐照过程中实测透过率(散点)关系

    Figure 8.  Relationship between the transmittance(solid lines) in dynamic film-layer thinning model and the transmittance(scattered points) measured actually during irradiation

    表  1  System indices corresponding to different schemes

    Table  1.   System indices corresponding to different schemes

    Index requirement System index Regular film system Combined film system Combined BAAR film system that includes film layers with an extremely low refraction index
    Retardation/(RMS, nm) < 2.00 2.69 2.29 1.94
    Diattenuation(RMS) < 0.005 0.009 0.015 0.010
    Apodization uniformity > 0.90 0.79 0.89 0.94
    Transmittance > 0.60 0.69 0.55 0.67
    下载: 导出CSV
  • [1] 姚汉民, 胡松, 刑延文.光学投影曝光微纳加工技术[M].北京:北京工业大学出版社, 2006, 12.

    YAO H M, HU S, XING Y W. Optical Projection Exposure Technology of Micro and Nano Fabrication[M]. Beijing:Beijing University of Technology Press, 2006, 12.(in Chinese)
    [2] BURN J L. Immersion lithography and its impact on semiconductor manufacturing[J]. Journal of Microlithography Microfabrication & Microsystems, 2004, 3(3):1-7. doi: 10.1117-1.1756917/
    [3] PAUL A Z, BRYAN J R, EMIL C P, et al.. High index 193 nm immersion lithography:the beginning or the end of the road[J]. SPIE, 2009, 7274(20):1-11. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c72a67e955016d9a4cbbd0ea0b0f55ff
    [4] BERNHARD K, PAUL G, REINER G, et al.. Catadioptriclens design:the breakthrough to hyper-NA optics[J]. SPIE, 2006, 6154(20):1-9. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1279406
    [5] ZACZEK C, MULLENDER S, ENKISCH H, et al.. Coatings for next generation lithography[J]. SPIE, 2008, 7101:71010X. doi: 10.1117/12.796944
    [6] Carl Zeiss SMT A G. Projection objective for immersion lithography: US, 7460206B2[P]. 2008-12-02.
    [7] OHMORI K, ANDO T, TSUJI H, et al. Top coat investigation for immersion specific issue prevention[C]. 2nd International Symposium on Immersion Lithography, Bruges, Belgium, 2005: O22.
    [8] LIBERMAN V, SWITKES M, ROTHSCHILD M, et al.. Long-term 193-nm laser irradiation of thin-film-coated CaF2 in the presence of H2O[J]. SPIE, 2005, 5754:646-654. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=861732
    [9] ASML Netherlands B.V.. Lithographic apparatus and in-line cleaning apparatus: US, 2009195761A1[P]. 2009-08-06.
    [10] LIBERMAN V, ROTHSCHILD M, SEDLACEK J H C, et al.. Excimer-laser-induced degradation of fused silica and calcium fluoride for 193-nm lithographic applications[J]. Optics Letters, 1999, 24(1):58-60. doi: 10.1364/OL.24.000058
    [11] LIBERMAN V, ROTHSCHILD M, SEDLACEK J H C, et al.. Marathon testing of optical materials for 193-nm lithographic applications[J]. SPIE, 1998, 3578:2-15. http://spie.org/x648.html?product_id=344432
    [12] MURATA T, ISHIZAWA H, MOTOYAMA I, et al.. Preparation of high-performance optical coatings with fluoride nanoparticle films made from autoclaved sols[J]. Applied Optics, 2006, 45(7):1465-1468. doi: 10.1364/AO.45.001465
    [13] 02专项"高NA浸没光学系统关键技术研究"项目顺利通过专项任务内部验收.长春国科精密光学技术有限公司国科资讯[EB/OL].[2018-01-02]. http://www.cnepo.com.cn/index.php?id=1892.

    02 special project 'Key Technology Research for High NA Immersion Optics System' passed the internal acceptance of the special task smoothly. Changchun National Extreme Precision Optics Co. Ltd. Information[EB/OL].[2018-01-02]. http://www.cnepo.com.cn/index.php?id=1892.(in Chinese)
    [14] 赵灵, 武潇野, 谷永强, 等.激光量热法测量深紫外氟化物薄膜吸收[J].中国激光, 2014, 41(8):0807001. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201408030.htm

    ZHAO L, WU X Y, GU Y Q, et al.. Measuring the absorptance of deep ultraviolet fluoride coatings with laser calorimetry[J]. Chinese J. Lasers, 2014, 41(8):0807001.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201408030.htm
    [15] 张立超.溅射法制备多层膜沉积速率的标定[J].光学精密工程, 2010, 18(12):2530-2536. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201012002

    ZHANG L CH. Calibration of deposition rates of multilayer coatings by sputtering depositions[J]. Opt. Precision Eng., 2010, 18(12):2530-2536.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201012002
    [16] 张立超, 才玺坤, 时光.深紫外光刻光学薄膜[J].中国光学, 2015, 8(2):169-181. http://www.chineseoptics.net.cn/CN/abstract/abstract9262.shtml

    ZHANG L CH, CAI X K, SHI G. Optical coatings for DUV Lithography[J]. Chinese Optics, 2015, 8(2):169-181.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9262.shtml
    [17] KELKAR P, TIRRI B, WILKLOW R, et al.. Deposition and characterization of challenging DUV coatings[J]. SPIE, 2008, 7067:706-708. doi: 10.1117/12.794752
    [18] 薛春荣, 范正修, 邵建达.真空紫外光学薄膜及薄膜材料[J].激光与光电子学进展, 2008, 45(1):57-64. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200801010

    XUE CH R, FAN ZH X, SHAO J D. Vaccum ultraviolet optical coatings and film materials[J]. Laser & Optoelectronics Progress, 2008, 45(1):57-64.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200801010
    [19] 刘华松, 王利栓, 姜玉刚, 等.离子束溅射制备SiO2薄膜折射率与应力调整[J].光学精密工程, 2013, 21(9):2238-2243. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201309005.htm

    LIU H S, WANG L SH, JIANG Y G, et al.. Adjustments of refractive index and stress of SiO2 films prepared by IBS technology[J]. Opt. Precision Eng., 2013, 21(9):2238-2243.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201309005.htm
    [20] 俞侃, 包佳祺.基于等效层理论的薄膜滤光片中心波长消偏振膜系设计[J].光学精密工程, 2016, 24(1):45-49. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201601007

    YU K, BAO J Q. Design of thin film filter central wavelength depolarization stack based on equivalent layers theory[J]. Opt. Precision Eng., 2016, 24(1):45-49.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201601007
    [21] 包佳祺, 刘祥彪, 俞侃.长波通截止滤光片的消偏振设计[J].光学精密工程, 2016, 24(10s):82-86. http://cdmd.cnki.com.cn/Article/CDMD-10335-2005042001.htm

    BAO J Q, LIU X B, YU K. Design of non-polarization long-wave-pass edge filter[J]. Opt. Precision Eng., 2016, 24(10s):82-86.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10335-2005042001.htm
    [22] 奥拉夫斯腾泽尔.光学薄膜材料的理论与实践[M].张立超, 才玺坤, 时光, 等, 译.北京: 国防工业出版社, 2017.

    OLAF STENZEL. Optical Coating: Material Aspects in Theory and Practice[M]. ZHANG L CH, CAI X K, SHI G, et al., Transl. Beijing: National Defense Industry Press, 2017.(in Chinese)
    [23] CHEN M F, CHANG H S, ALLAN S, et al.. Design of optical path for wide-angle gradient-index antireflection coatings[J]. Applied Optics, 2007, 46(26):6533-6538. doi: 10.1364/AO.46.006533
    [24] 张汝京, 等.纳米集成电路制造工艺[M].北京:清华大学出版社, 2014:161-171.

    ZHANG R J, et al.. Nanoscale Integtated Circuits the Manufacturing Process[M]. Beijing:Tsinghua University Press, 2014:161-171.(in Chinese)
    [25] CUI X M, DING R M, WANG M CH, et al.. A hydrophobic and abrasion-resistant MgF2 coating with an ultralow refractive index for double-layer broad band antireflective coating[J]. Journal of Materials Chemistry C, 2017, 5(12):3088-3096. doi: 10.1039/C6TC05307F
    [26] YAN L H, DONG F Q, ZHAO S N, et al.. Hydrophobic MgF2 antireflective films with enhanced environmental durability by a sol-gel process[J]. Materials Letters, 2014, 129:156-158. doi: 10.1016/j.matlet.2014.05.036
    [27] 佐婧, 郭晓阳, 刘星元.基于旋涂法和电子束蒸发法制备的V2O5/Ag/V2O5叠层透明导电薄膜[J].发光学报, 2014, 35(3):360-365. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FGXB201403021&dbname=CJFD&dbcode=CJFQ

    ZUO J, GUO X Y, LIU X Y. V2O5/Ag/V2O5 multilayer transparent conductive films based on sol-gel and electron beam evaporation techniques[J]. Chinese Journal of Luminescence, 2014, 35(3):360-365.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FGXB201403021&dbname=CJFD&dbcode=CJFQ
    [28] 高娅娜, 许云龙, 张建华, 等.溶胶凝胶法制备以Al2O3为界面修饰层的铪铟锌氧薄膜晶体管[J].发光学报, 2016, 37(1):50-55. http://d.old.wanfangdata.com.cn/Periodical/fgxb201601009

    GAO Y N, XU Y L, ZHANG J H, et al.. Solution processed HfInZnO thin film transistors with HfSiOx dielectrics modified by Al2O3 films[J]. Chinese Journal of Luminescence, 2016, 37(1):50-55.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201601009
    [29] NOACK J, SCHEURELL K, KEMNITZ E, et al.. MgF2 antireflective coatings by sol-gel processing:film preparation and thermal densification[J]. J. Mater Chem., 2012, 22(35):18535-18541. doi: 10.1039/c2jm33324d
    [30] 王宇, 李博颖, 裴伶会, 等.干拉法制备散射偏光片实验研究[J].液晶与显示, 2017, 32(6):438-442. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201706004

    WANG Y, LI B Y, PEI L H, et al.. Experimental research on preparation of scattering polarizer by dry stretching method[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(6):438-442.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201706004
    [31] ISHIZAWA H, NⅡSAKA S, MURATA T, et al.. Preparation of MgF2-SiO2 thin films with a low refractive index by a solgel process[J]. Applied Optics, 2008, 47(13):C200-C205. doi: 10.1364/AO.47.00C200
    [32] 村田剛.フッ化マグネシウムナノ粒子を用いた高性能反射防止膜の研究[D].名古屋市: なごやだいがく/名古屋大学, 2012.
    [33] DING R M, CUI X M, ZHANG C, et al.. Tri-wavelength broadband antireflective coating built from refractive index-controlled MgF2 films[J]. J. Mater Chem. C, 2015, 3:3219-3224. doi: 10.1039/C4TC02542C
    [34] CUI X M, DING R M, WANG M CH, et al.. In situ surface assembly derived ultralow refractive index MgF2-SiO2 hybrid film for tri-layer broadband antireflective coating[J]. Adv. Optical Mater, 2016, 4:722-730. doi: 10.1002/adom.v4.5
    [35] 尚洪波, 刘春来, 张巍, 等.膜系引入偏振相差对投影光刻物镜设计的影响与改进[J].光学学报, 2015, 35(1):0122003. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxxb201501040&dbname=CJFD&dbcode=CJFQ

    SHANG H B, LIU CH L, ZHANG W, et al.. Effects and improvements of coating induced polarization aberration on lithography lens design[J]. Acta Optica Sinica, 2015, 35(1):0122003.(in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxxb201501040&dbname=CJFD&dbcode=CJFQ
    [36] 株式会社尼康.光学元件和曝光装置: 中国, CN200480024324.3[P]. 2004-12-03.

    Nikon Corporation. Optical element and exposure device: China, CN200480024324.3[P]. 2004-12-03.(in Chinese)
    [37] Taiwan Semiconductor Manufacturing Company. Anti-corrosion layer on objective lens for liquid immersion lithography applications: US, 20050100745A1[P]. 2005-05-12.
    [38] Carl Zeiss SMT AG. Method of processing an optical element and an optical, in particular for a microlithographic projection exposure apparatus: US, 20080309905A1[P]. 2008-12-18.
    [39] LIBERMAN V, SWITKES M, ROTHSCHILD M, et al.. Studies of consequences of photo-acid generator leaching in 193 nm immersion lithography[J]. SPIE, 2006, 6154:1-12. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1279396
    [40] 崔铮.微纳米加工技术及其应用[M].北京:高等教育出版社, 2013, 4.

    CUI ZH. Micro-Nano Fabrication Technologies and Applications[M]. Beijing:Higher Education Press, 2013, 4. (in Chinese)
    [41] 剧永波, 陈建军, 张宸铭, 等.LTPS工艺中光刻胶与膜层粘附力的研究[J].液晶与显示, 2017, 32(3):190-195. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703005

    JU Y B, CHEN J J, ZHANG CH M, et al.. Photoresist and film adhesive force in LTPS process[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(3):190-195.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703005
    [42] PIC N, MARTIN C, VITALIS M, et al.. Defectivity decrease in the photolithography process by AMC level reduction through implementation of novel fiteration and monitoring solutions[J]. SPIE, 2010, 7638:76380M. doi: 10.1117/12.845591
    [43] WANG D Y, LIU J R, KANG D, et al.. Blob defect prevention in 193nm topcoat-free immersion lithography[J]. SPIE, 2012, 8325:83252G1-8. doi: 10.1117/12.916818
    [44] 叶雄英, 李子尚, 冯金扬, 等.基于二氧化硅溅射的PMMA和PDMS亲水改性[J].光学精密工程, 2014, 22(8):2096-2102. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201408017

    YE X Y, LI Z SH, FENG J Y, et al.. Hydrophilic modification of PMMA and PDMS based on silicon dioxide sputtering[J]. Opt. Precision Eng., 2014, 22(8):2096-2102.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201408017
    [45] 刘剑, 王明乐, 李园园, 等.偏振光照对偶氮苯侧链聚硅氧烷膜表面能的提高[J].液晶与显示, 2011, 26(5):577-581. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201105002

    LIU J, WANG M L, LI Y Y, et al.. Promotion of surface free energy of azobenzene containing side-chain liquid crystalline polysiloxane film by polarized light[J]. Chinese Journal of Liquid Crystals and Displays, 2011, 26(5):577-581.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201105002
    [46] WAKANA K, TSUSHIMA H, MATSUMOTO S, et al.. Optical performance of laser light source for ArF immersion double patterning lithography tool[J]. SPIE, 2009, 7274:72743J-1. http://www.sciencedirect.com/science/article/pii/S1386947707006765
    [47] 朱美萍, 孙建, 张伟丽, 等.高性能偏振膜的研制[J].光学精密工程, 2016, 24(12):2908-2915. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201612004

    ZHU M P, SUN J, ZHANG W L, et al.. Development of high performance polarizer coatings[J]. Opt. Precision Eng., 2016, 24(12):2908-2915.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201612004
    [48] APELO, MANN K, ZOLLER A, et al.. Nonlinear absorption of thin Al2O3 films at 193 nm[J]. Appl. Opt., 2000, 39(18):3165-3169. doi: 10.1364/AO.39.003165
    [49] LIBERMAN V, ROTHSCHILD M, PALMACCI S T, et al.. Acceleratated damage to blank and antireflectance-coated CaF2 surfaces under 157-nm laser irradiation[J]. SPIE, 2003, 5040:1631-1638. https://www.spiedigitallibrary.org/redirect/proceedings/proceeding?doi=10.1117/12.485470
    [50] LIBERMAN V, PALMACCI S T, HARDY D E, et al.. Controlled contamination studies in 193-nm immersion lithography[J]. SPIE, 2005, 5754:148-153. doi: 10.1117/12.601473.short
    [51] LIBERMAN V, ROTHSCHILD M, PALMACCI S T, et al.. Impact of photoacid generator leaching on optics photocontamination in 193-nm immersion lithography[J]. SPIE, 2007, 6(1):013001. https://www.researchgate.net/publication/240964391_Impact_of_photoacid_generator_leaching_on_optics_photocontamination_in_193-nm_immersion_lithography
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1553
  • HTML全文浏览量:  376
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-20
  • 修回日期:  2017-12-15
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回