-
摘要: 为了满足军事探测环境下复杂、多样化的探测需求,机载探测平台往往集成多个探测系统。共孔径复合作为一种理想的集成方式,在综合各类探测系统优势的基础上,缩减了系统的总体积,减轻了平台负担。本文计算并设计了一种卡塞格林式红外与合成孔径雷达共孔径天线。首先,根据合成孔径雷达指标设计主镜;接着,通过像差系数与非球面参数组成的方程组求解卡塞格林结构;然后,在前端卡塞格林结构、冷阑参数和红外光学系统指标的限制下,利用PW形式的像差公式计算透镜的具体结构。最终得到的雷达天线口径为1.22 m,增益为40.9 dB,红外光学系统焦距为−1 000 mm,全视场角为0.704°,次镜遮拦比小于0.33,在33 lp/mm处各温度区间MTF值大于0.4。所设计共孔径天线的各项指标均满足使用要求。
-
关键词:
- 光学设计 /
- 天线设计 /
- 合成孔径雷达/红外共孔径 /
- 冷阑匹配
Abstract: In order to adapt to increasingly complex detection environments and detection requirements, airborne detection platforms often integrate multiple detection systems. As an ideal integration method, the common aperture composite not only combines the advantages of various types of detection systems, but also reduces the total volume of the system and reduces the burden on the platform. In this paper, a Cassegrain-type common-aperture antenna of infrared and Synthetic Aperture Radars (SAR) is calculated and designed. Firstly, the primary mirror is calculated according to the radar design requirements; then, the Cassegrain structure is designed by equations consisting of aberration coefficients and aspheric parameters; next, under the limitation of the front Cassegrain structure, the cold stop parameters and infrared system parameters, the lens parameters of the infrared system are calculated by the aberration formula in PW form. The proposed radar antenna has a diameter of 1.22 m and a gain of 40.9 dB. The infrared system has a focal length of −1 000 mm and a full field of view of 0.704°. The obscuration ratio of the secondary mirror is less than 0.33, and the MTF value is greater than 0.4 for each temperature level at 33 lp/mm. All the parameters of the proposed co-aperture antenna meet the requirements of expected applications. -
表 1 SAR指标
Table 1. Parameters of SAR
参数 值 高度/km 20 方位向分辨率/m ≤1 距离向分辨率/m ≤1 入射角范围/º 10~60 观测带宽度/m 470~1 840 带宽/MHz 200 增益/dB 40 频率/GHz(波长/mm) 10(30) 表 2 红外光学系统指标
Table 2. Parameters of infrared optical system
参数 值 波长/μm 3~5 焦距/mm 1 000 探测器分辨率 640×512 像元尺寸/μm 15×15 视场角/º 0.55×0.44 F# 3 地面像元分辨率/m 0.3 环境温度/℃ −55~70 表 3 冷反射分析结果
Table 3. Analysis results of cold reflection
面序号 YNI I/Ibar 像面接收能量比 像面光斑半径/mm 1 −28.01 3.28 0.042 3% 18.17 2 −28.01 3.29 0.042 3% 18.25 3 22.77 2.83 0.063 0% 17.98 4 11.07 2.81 0.211% 18.88 5 −1.92 2.47 7.32% 11.60 6 −6.84 1.27 0.614% 7.72 7 −6.84 1.27 0.605% 7.64 8 1.93 0.66 4.20% 6.57 9 −4.75 1.61 1.23% 9.38 10 −1.10 9.03 22.0% 18.38 -
[1] 夏团结, 申涛, 方珉, 等. 红外成像/被动微波复合制导技术研究[J]. 红外技术,2018,40(5):481-486.XIA T J, SHEN T, FANG M, et al. Composite guidance technology research on passive microwave for infrared imaging[J]. Infrared Technology, 2018, 40(5): 481-486. (in Chinese) [2] 磨国瑞, 张江华, 李超, 等. 毫米波雷达/红外成像复合制导技术研究[J]. 火控雷达技术,2018,47(1):1-5. doi: 10.3969/j.issn.1008-8652.2018.01.001MO G R, ZHANG J H, LI CH, et al. Study on millimeter wave radar/infrared imaging compound guidance technology[J]. Fire Control Radar Technology, 2018, 47(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1008-8652.2018.01.001 [3] WU Y Q, WANG ZH L. SAR and infrared image fusion in complex contourlet domain based on joint sparse representation[J]. Journal of Radars, 2017, 6(4): 349-358. [4] CHARLES J R, HOPPE D J, SEHIC A. Hybrid RF/optical communication terminal with spherical primary optics for optical reception[C]. Proceedings of 2011 International Conference on Space Optical Systems and Applications, IEEE, 2011: 171-179. [5] 钱坤, 刘家国, 李婷, 等. 毫米波/激光/红外共口径复合光学系统设计[J]. 现代防御技术,2019,47(2):61-65, 79. doi: 10.3969/j.issn.1009-086x.2019.02.11QIAN K, LIU J G, LI T, et al. Design of a millimeter wave/laser/infrared common aperture compound optical system[J]. Modern Defence Technology, 2019, 47(2): 61-65, 79. (in Chinese) doi: 10.3969/j.issn.1009-086x.2019.02.11 [6] 卢政伟, 邵帅, 马亚坤. 复合式无遮拦激光扩束器的设计[J]. 中国光学,2018,11(4):582-589. doi: 10.3788/co.20181104.0582LU ZH W, SHAO SH, MA Y K. Design of a composite laser beam expander without obscuration[J]. Chinese Optics, 2018, 11(4): 582-589. (in Chinese) doi: 10.3788/co.20181104.0582 [7] BRUSGARD T C, MCCORMICK T C, SIJGERS H K, et al.. Millimeter wave and infrared sensor in a common receiving aperture: United States, US5214438[P]. 1993-05-25. [8] 张瑞, 祖成奎. 玻璃的光学透过与调控[J]. 硅酸盐通报,2017,36(S1):122-137.ZHANG R, ZU CH K. Optical transmission and control of glass[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(S1): 122-137. (in Chinese) [9] 江东亮. 透明陶瓷——无机材料研究与发展重要方向之一[J]. 无机材料学报,2009,24(5):873-881. doi: 10.3724/SP.J.1077.2009.00873JIANG D L. Transparent ceramics: one of the most important field of research and development of inorganic materials[J]. Journal of Inorganic Materials, 2009, 24(5): 873-881. (in Chinese) doi: 10.3724/SP.J.1077.2009.00873 [10] 刘立业, 柴舜连, 毛钧杰. 红外/毫米波导弹头罩材料的特性研究[J]. 飞航导弹,2001(1):57-59, 63. doi: 10.3969/j.issn.1009-1319.2001.01.015LIU L Y, CHAI SH L, MAO J J. Study on characteristics of infrared/millimeter wave missile head cover materials[J]. Winged Missiles Journal, 2001(1): 57-59, 63. (in Chinese) doi: 10.3969/j.issn.1009-1319.2001.01.015 [11] 朱华新, 冯晓国, 赵晶丽, 等. ZnS光窗上增透与带通频率选择表面组合膜设计[J]. 光学学报,2010,30(9):2766-2770. doi: 10.3788/AOS20103009.2766ZHU H X, FENG X G, ZHAO J L, et al. Design of antireflection and band-pass frequency selective surface combining coatings for ZnS optical window[J]. Acta Optica Sinica, 2010, 30(9): 2766-2770. (in Chinese) doi: 10.3788/AOS20103009.2766 [12] 许戎戎. 基于集总元件加载和分形结构的多频频率选择表面研究[D]. 南京: 南京理工大学, 2009.XU R R. Study on multi-band frequency selective surfaces based on lumped element loadings and fractal structure[D]. Nanjing: Nanjing University of Science and Technology, 2009. (in Chinese) [13] 康行健.天线原理与设计[M]. 北京: 北京理工大学出版社, 1993.KANG X J. Antenna Principle and Design[M]. Beijing: Beijing Institute of Technology Press, 1993. (in Chinese) [14] 鲁加国.合成孔径雷达设计技术[M]. 北京: 国防工业出版社, 2017.LU J G. Design Technology of Synthetic Aperture Radar[M]. Beijing: National Defense Industry Press, 2017. (in Chinese) [15] 潘君骅.光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.PAN J Y. The Design, Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Soochow University Press, 2004. (in Chinese) [16] 王琪, 梁静秋, 梁中翥, 等. 分孔径红外偏振成像仪光学系统设计[J]. 中国光学,2018,11(1):92-99.WANG Q, LIANG J Q, LIANG ZH ZH, et al. Design of decentered aperture-divided optical system of infrared polarization imager[J]. Chinese Optics, 2018, 11(1): 92-99. (in Chinese) [17] 张以谟. 应用光学[M]. 北京: 机械工业出版社, 1982.ZHANG Y M. Applied Optics[M]. Beijing: China Machine Press, 1982. (in Chinese) [18] 李航. 中波红外目标探测装置关键技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.LI H. Research on key techniques for medium wave infrared target detection device[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017. (in Chinese) [19] 史光辉. 用高斯光学和三级像差理论求变焦距物镜的初始解[J]. 中国光学,2018,11(6):1047-1060. doi: 10.3788/co.20181106.1047SHI G H. Find preliminary solution of zoom objective lens using Gaussian optics and third-order aberration theory[J]. Chinese Optics, 2018, 11(6): 1047-1060. (in Chinese) doi: 10.3788/co.20181106.1047 [20] 沈宏海, 王国华, 丁金伟, 等. 主动补偿无热化技术在机载红外光学系统中的应用[J]. 光学精密工程,2010,18(3):593-601.SHEN H H, WANG G H, DING J W, et al. Application of active-athermal compensation to airborne IR optical systems[J]. Optics and Precision Engineering, 2010, 18(3): 593-601. (in Chinese)