留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交叉定标中的不确定度分析及定标系数计算改进

高帅 李元 白廷柱 张玉香 郑小兵

高帅, 李元, 白廷柱, 张玉香, 郑小兵. 交叉定标中的不确定度分析及定标系数计算改进[J]. 中国光学(中英文), 2020, 13(3): 568-576. doi: 10.3788/CO.2019-0215
引用本文: 高帅, 李元, 白廷柱, 张玉香, 郑小兵. 交叉定标中的不确定度分析及定标系数计算改进[J]. 中国光学(中英文), 2020, 13(3): 568-576. doi: 10.3788/CO.2019-0215
GAO Shuai, LI Yuan, BAI Ting-zhu, ZHANG Yu-xiang, ZHENG Xiao-bing. Uncertainty analysis in cross-calibration and optimization calculation of calibration coefficients[J]. Chinese Optics, 2020, 13(3): 568-576. doi: 10.3788/CO.2019-0215
Citation: GAO Shuai, LI Yuan, BAI Ting-zhu, ZHANG Yu-xiang, ZHENG Xiao-bing. Uncertainty analysis in cross-calibration and optimization calculation of calibration coefficients[J]. Chinese Optics, 2020, 13(3): 568-576. doi: 10.3788/CO.2019-0215

交叉定标中的不确定度分析及定标系数计算改进

基金项目: 国家重点研发计划课题(No. 2018YFB0504601);国家自然科学基金资助项目(No. 41271373)
详细信息
    作者简介:

    高 帅(1995—),女,山西吕梁人,硕士研究生,研究方向为遥感器交叉定标。E-mail:arcbeacon@foxmail.com

    李 元(1978—),女,北京丰台人,工学博士,国家卫星气象中心副研究员,主要从事在轨遥感器定标与产品反演等方面的研究。E-mail:liyuan@cma.gov.cn

  • 中图分类号: TP732

Uncertainty analysis in cross-calibration and optimization calculation of calibration coefficients

Funds: Supported by National Key R&D Program of China (No. 2018YFB0504601); National Natural Science Foundation of China (No. 41271373)
More Information
  • 摘要: 一般交叉定标方法是利用普通最小二乘法的回归方式对时间、空间、观测几何、光谱匹配得到的近一致观测数据点对来计算定标系数,该方法忽略了各数据点对的质量差异,降低了定标系数的有效性。针对此问题,本文提出了基于不确定度计算的定标改进方法,利用不确定度分析方法计算数据点对中各辐射基准值的不确定度并给出权重系数,采用加权最小二乘法回归定标系数。选取与在研的基准载荷参数最为接近的HYPERION作为辐射基准替代载荷,分别利用普通最小二乘法和加权最小二乘法对MODIS CH1~7进行了定标,采用MODIS官方定标系数作为真值对定标结果进行验证。结果表明,采用加权最小二乘法对MODIS的1、2、4、5、6、7通道回归的定标系数更接近真值,定标结果的最大相对误差与传统方法相比降低了3%~5%,平均相对误差降低了0.5%~1.5%,说明本文的加权最小二乘法可进一步提升交叉定标精度。

     

  • 图 1  交叉定标流程图

    Figure 1.  Flowchart of cross-calibration approach

    图 2  2012年7月10日HYPERION(左)和MODIS(右)过境Liyba4场地时的影像

    Figure 2.  Images of HYPERION(left) and MODIS(right) when they passed the Liyba4 site on 10th July, 2012

    图 3  MCM法各项K因子概率分布图

    Figure 3.  The probability density distribution of K-factors of each term of MCM

    图 4  HYPERION对MODIS CH01定标数据点对以及OLS和WLS的回归定标线

    Figure 4.  The data points of the MODIS CH01 and regression results of WLS and OLS

    图 5  WLS和OLS计算的回归系数对同一DN值序列的定标结果与官方定标结果的相对误差

    Figure 5.  The relative error between the regressed coefficients by WLS and OLS calibrating a DN sequence with the official calibrated coefficients

    表  1  与基准载荷指标相近的高光谱成像仪参数

    Table  1.   Hyperspectral imager′s parameters similar to the radiance standard remote sensor index

    载荷名称光谱覆盖
    范围/nm
    光谱分辨率/
    nm
    空间分辨率/
    m
    幅宽/
    km
    通道数
    HICO380~9605.7100
    HYPERION400~2 50010307.7242
    LAC930~1 5802~6250185256
    HIS450~950410050128
    下载: 导出CSV

    表  2  WLS和OLS对MODIS CH1~7通道的定标系数回归结果

    Table  2.   The calibration result of MODIS CH1~7 by WLS and OLS

    MODIS CH1234567
    β00.000 00.000 00.000 00.000 00.000 00.000 00.000 0
    β10.027 20.010 20.036 10.024 90.005 90.002 70.000 8
    βOLS 0−1.902 5−1.951 6−4.023 8−0.900 5−2.885 8−0.746 6−0.496 0
    βOLS 10.026 10.009 60.031 80.023 40.005 30.002 40.000 8
    βWLS 0−0.325 3−0.288 3−5.891 5−2.501 9−2.379 2−0.730 2−0.364 4
    βWLS 10.026 10.009 60.032 50.024 00.005 30.002 40.000 8
    ${{{\epsilon}}_{{{\max}}\;{\rm{OLS}}}}$0.091 20.110 10.215 40.062 90.213 10.142 80.229 2
    ${{{\epsilon}}_{{{\max}}\;{\rm{WLS}}}}$0.048 60.065 40.238 60.042 00.160 90.106 00.170 2
    εOLS0.058 90.076 10.164 70.068 90.149 90.126 50.071 6
    εWLS0.043 00.060 40.164 30.064 90.138 80.119 40.054 4
    RMSEOLS6.904 67.364 816.573 16.934 68.633 23.893 70.466 3
    RMSEWLS5.455 26.254 116.095 95.896 08.061 93.667 80.359 7
    下载: 导出CSV
  • [1] CHANDER G, HEWISON T J, FOX N, et al. Overview of intercalibration of satellite instruments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1056-1080. doi: 10.1109/TGRS.2012.2228654
    [2] LUKASHIN C, WIELICKI B A, YOUNG D F, et al. Uncertainty estimates for imager reference inter-calibration with CLARREO reflected solar spectrometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1425-1436. doi: 10.1109/TGRS.2012.2233480
    [3] National Research Council. Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond[M]. Washington, DC, USA: National Academies Press, 2007.
    [4] CEOS, W M O, GSICS, et al.. SI-traceable space-based climate observing system workshop[R]. London, UK: NPL, 2019.
    [5] GORROÑO J, BANKS A C, FOX N P, et al. Radiometric inter-sensor cross-calibration uncertainty using a traceable high accuracy reference hyperspectral imager[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 393-417. doi: 10.1016/j.isprsjprs.2017.07.002
    [6] ROITHMAYR C M, LUKASHIN C, SPETH P W, et al. CLARREO approach for reference intercalibration of reflected solar sensors: on-orbit data matching and sampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6762-6774. doi: 10.1109/TGRS.2014.2302397
    [7] 王玉鹏, 胡秀清, 王红睿, 等. 可在轨溯源的太阳反射波段光学遥感仪器辐射定标基准传递链路[J]. 光学 精密工程,2015,23(7):1807-1812. doi: 10.3788/OPE.20152307.1807

    WANG Y P, HU X Q, WANG H R, et al. Standard transfer chain for radiometric calibration of optical sensing instruments with traceability[J]. Optics and Precision Engineering, 2015, 23(7): 1807-1812. (in Chinese) doi: 10.3788/OPE.20152307.1807
    [8] 陈申玮, 徐娜, 戴铁, 等. 空间辐射基准传递不确定性的光谱敏感性分析[J]. 光学学报,2018,38(1):0128004. doi: 10.3788/AOS201838.0128004

    CHEN SH W, XU N, DAI T, et al. Sensitivity of intercalibration uncertainty on spectral sampling of space-based radiance standard[J]. Acta Optica Sinica, 2018, 38(1): 0128004. (in Chinese) doi: 10.3788/AOS201838.0128004
    [9] 赵维宁, 胡秀清, 方伟, 等. 卫星光学仪器辐射交互定标方法的应用和发展[J]. 光学 精密工程,2015,23(7):1921-1931. doi: 10.3788/OPE.20152307.1921

    ZHAO W N, HU X Q, FANG W, et al. Development and applications of intercalibration for satellite optical instruments[J]. Optics and Precision Engineering, 2015, 23(7): 1921-1931. (in Chinese) doi: 10.3788/OPE.20152307.1921
    [10] XIONG X X, ANGAL A, BUTLER J, et al. Global space-based inter-calibration system reflective solar calibration reference: from Aqua MODIS to S-NPP VIIRS[J]. Proceedings of SPIE, 2016, 9881: 98811D.
    [11] 徐文斌, 郑小兵, 易维宁. 基于超光谱成像仪Hyperion的交叉定标方法[J]. 光学学报,2013,33(5):0528002. doi: 10.3788/AOS201333.0528002

    XU W B, ZHENG X B, YI W N. Cross-calibration method based on hyperspectral imager Hyperion[J]. Acta Optica Sinica, 2013, 33(5): 0528002. (in Chinese) doi: 10.3788/AOS201333.0528002
    [12] HUNG K W, SIU W C. Improved image interpolation using bilateral filter for weighted least square estimation[C]. Proceedings of 2010 IEEE International Conference on Image Processing, IEEE, 2010.
    [13] PETRAKOS G, ARTELARIS P. European regional convergence revisited: a weighted least squares approach[J]. Growth and Change, 2009, 40(2): 314-331. doi: 10.1111/j.1468-2257.2009.00477.x
    [14] USGS. EO-1 HYPERION L1GST product[EB/OL]. USGS. https://earthexplorer.usgs.gov/.[2019-03-24].
    [15] NASA. TERRA MODIS Level 1B Calibrated Radiances[EB/OL]. NASA EOSDIS LP DAAC. https://ladsweb.modaps.eosdis.nasa.gov/search/.
    [16] CHANDER G, HELDER D L, AARON D, et al. Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1282-1296. doi: 10.1109/TGRS.2012.2228008
    [17] JCGM. JCGM 101: 2008 Evaluation of measurement data – supplement 1 to the “guide to the expression of uncertainty in measurement” – propagation of distributions using a Monte Carlo method[S]. BIPM Joint Committee for Guides in Metrology, 2008.
    [18] XIONG X, CHE N, XIE Y, et al. Four-years of on-orbit spectral characterization results for Aqua MODIS reflective solar bands[J]. Proceedings of SPIE, 2006, 6361: 63610S. doi: 10.1117/12.687163
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1946
  • HTML全文浏览量:  947
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-07
  • 修回日期:  2019-11-21
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回