Linearity testing device for the photoelectric detecting system of solar spectrometers
-
摘要: 依据光叠加原理研制了一台太阳光谱仪光电探测系统线性度测试装置。该测试装置由300 W高稳定度氙灯光源、250 W卤钨灯光源、双层中性滤光片轮、双孔光阑及光学成像系统组成。依靠中性滤光片改变光束强度,依靠独立开闭的双光阑和光学成像系统实现光流叠加。该装置工作波段为200~2 400 nm,可模拟紫外-可见-红外波段地外太阳光谱辐照度,动态范围为104,已用于太阳光谱仪等光谱仪和硅光电二极管标准探测器等光电探测系统线性测量。Abstract: According to the optical beam superposition principle, a set of linearity measurement devices of spectrometer photoelectrical detecting system was developed. It consists of a 300 W super-quiet xenon lamp, a 250 W halogen tungsten lamp, a neutral filter group, double apertures and optical imaging system. The radiant power of the optical beams is manipulated with neutral filters and optical beam superposition is achieved using double apertures and optical imaging system. The spectral range of this device is 200-2 400 nm and the dynamic range of the linearity measurement is 104. It can simulate the extraterrestrial solar spectral irradiance and can be used for measuring linearity in solar spectrometer photoelectrical systems and silicon photodiode standard detection.
-
Key words:
- linearity /
- detecting system /
- spectrometer /
- radiometry
-
表 1 滤光片光密度和透过率
Table 1. Optical density and the transmittance of the neutral filters
Filter wheel Filter labels No.1 No.2 Optical density Transmittance/% Optical density Transmittance/% 1 0 100 0 100 2 1 10 0.1 79.43 3 2 1 0.3 50.12 4 3 0.1 0.5 31.62 5 4 0.01 / / 表 2 线性测量综合不确定度
Table 2. Uncertainty of linearity testing
Uncertainty sources Uncertainty/% VA reading stability and reproducibility 0.1 VB reading stability and reproducibility 0.1 V(A+B) reading stability and reproducibility 0.1 Combined uncertainty 0.14 -
[1] 李志刚.基于探测器标准的高精度光谱辐射标准光源[J].中国光学, 2015, 8(6):909-918. http://www.chineseoptics.net.cn/CN/abstract/abstract9362.shtmlLI ZH G. High accuracy spectroradiometric standard light source based on detector standard[J]. Chinese Optics, 2015, 8(6):909-918.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9362.shtml [2] LI ZH G, WANG X X, ZHENG Y Q, et al.. Absolute detector-based spectrally tunable radiant source using digital micromirror device and supercontinuum fiber laser[J]. Applied Optics, 2017, 56(17):5073-5079. doi: 10.1364/AO.56.005073 [3] 李福田, 李志刚, 王晓旭, 等.自校准型光谱辐亮度标准光源[J].光学 精密工程, 2017, 25(8):2004-2010. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201708005LI F T, LI ZH G, WANG X X, et al.. Self-calibrated spectral radiance standard source[J]. Opt. Precision Eng., 2017, 25(8):2004-2010.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201708005 [4] 王淑荣, 李福田, 宋克非, 等.FY-3A气象卫星紫外臭氧垂直探测仪[J].光学学报, 2009, 29(9):2590-2593. http://d.old.wanfangdata.com.cn/Periodical/gxxb200909045WANG SH R, LI F T, SONG K F, et al.. Ultrariolet ozone vertical profile probe for FY-3A meteorological satellite[J]. Acta Optica Sinica, 2009, 29(9):2590-2593.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxxb200909045 [5] O'DELL C W, DAY J O, POLLOCK R, et al.. Preflight radiometric calibration of the orbiting carbon observatory[J]. IEEE Transactions on Geoscience and Remote SensingI, 2010, 49(6):2438-2447. [6] LI ZH G, LIN CH, LI CH L, et al.. Prelaunch spectral calibration of a carbon dioxide spectrometer[J]. Measurement Science and Technology, 2017, 28(6):065801. doi: 10.1088/1361-6501/aa6507 [7] THUILLIER G, FOUJOLS T, BOLSÉE D, et al.. SOLAR/SOLSPEC:scientific objectives, instrument performance and its absolute calibration using a blackbody as primary standard source[J]. Solar Physics, 2009, 257(1):185-213. doi: 10.1007/s11207-009-9361-6 [8] SANDERS C L. Aphotocell linearity tester[J]. Applied Optics, 1962, 1(3):207-211. doi: 10.1364/AO.1.000207 [9] SANDERS C L. Accurate measurements of and corrections for nonlinearities in radiometers[J]. Journal of Research of the National Bureau of Standards Section A:Physics and Cheimistry, 1972, 76(5):437-453. [10] BUDDE W. Multidecade linearity measurements on Si photodiodes[J]. Applied Optics, 1979, 18(10):1555-1558. doi: 10.1364/AO.18.001555 [11] MIELENZ K D, ECKERLE K L. Spectrophotometer linearity testing using the double-aperture method[J]. Applied Optics, 1972, 11(10):2294-2303. doi: 10.1364/AO.11.002294 [12] SAUNDERS R D, SHUMAKER J B. Automated radiometric linearity tester[J]. Applied Optics, 1984, 23(20):3504-3506. doi: 10.1364/AO.23.003504 [13] THOMPSON A, CHEN H M. Beamcon Ⅲ, a linearity measurement instrument for optical detectors[J]. Journal of Research of the National Institute of Standards and Technology, 1994, 99(6):751-755. doi: 10.6028/jres.099.067 [14] THEOCHAROUS E. Absolute linearity measurements on LiTaO3 pyroelectric detectors[J]. Applied Optics, 2008, 47(18):3397-3405. doi: 10.1364/AO.47.003397 [15] THEOCHAROUS E. Absolute linearity measurements on a gold-black coated deuterated L-alanine-doped triglycine sulfate pyroelectric detector[J]. Applied Optics, 2008, 47(21):3731-3736. doi: 10.1364/AO.47.003731 [16] THEOCHAROUS E. Reply to comments on "Absolute linearity measurements on a PbS detector in the infrared"[J]. Applied Optics, 2007, 46(25):6495-6497. doi: 10.1364/AO.46.006495