留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photorefractive phenomenon of biphenyl derivatives

WANG Chun QI Hui CHANG Hai-tao DENG Jia-chun

王淳, 齐辉, 常海涛, 邓家春. 联苯衍生物的光折变效应[J]. 中国光学(中英文), 2019, 12(2): 362-370. doi: 10.3788/CO.20191202.0362
引用本文: 王淳, 齐辉, 常海涛, 邓家春. 联苯衍生物的光折变效应[J]. 中国光学(中英文), 2019, 12(2): 362-370. doi: 10.3788/CO.20191202.0362
WANG Chun, QI Hui, CHANG Hai-tao, DENG Jia-chun. Photorefractive phenomenon of biphenyl derivatives[J]. Chinese Optics, 2019, 12(2): 362-370. doi: 10.3788/CO.20191202.0362
Citation: WANG Chun, QI Hui, CHANG Hai-tao, DENG Jia-chun. Photorefractive phenomenon of biphenyl derivatives[J]. Chinese Optics, 2019, 12(2): 362-370. doi: 10.3788/CO.20191202.0362

联苯衍生物的光折变效应

基金项目: 

国家自然科学基金(青年科学基金项目) 11204213

天津市应用基础及前沿技术研究计划(青年基金项目) 12JCQNJC00800

详细信息
  • 中图分类号: O437.5

Photorefractive phenomenon of biphenyl derivatives

doi: 10.3788/CO.20191202.0362
Funds: 

National Natural Science Foundation(Youth Science Foundation Project) 11204213

Tianjin Application Foundation and Frontier Technology Research Program(Youth Foundation Project) 12JCQNJC00800

More Information
    Author Bio:

    WANG Chun (1992-), Master graduate student, College of Science, Tianjin University of Technology.Her research interests are about the photoelectric effect of semiconductor materials.E-mail:897101109@qq.com

    DENG Jia-chun (1967-), Professor, College of Science, Tianjin University of Technology.He research interests are about the photoelectric effect of semiconductor materials.E-mail:dengjiachun@tjut.edu.cn

    Corresponding author: DENG Jia-chun, E-mail:dengjiachun@tjut.edu.cn
  • 摘要: 在连续谱激光(532 nm)照射下,观察到联苯衍生物有光折变现象。本文制备了(4-羟基苯基)-5-嘧啶醇、4'-羟基-4-联苯基腈、3-氨基-4-苯基苯酚和4,4'-Biphenol两类实验样品,将联苯衍生物分别溶于N,N-二甲基甲酰胺(DMF)溶剂中,获得溶液浓度比为2wt%的4个溶液样品;将联苯衍生物溶于无水乙醇通过常温慢速挥发,制成了4个单晶体样品。在激光照射下,2-(4-羟基苯基)-5-嘧啶醇、4'-羟基-4-联苯基腈和3-氨基-4-苯基苯酚3个溶液样品中观察到周期性对称的明暗相间的空间条纹。无论如何增大激光功率密度,在4,4'-Biphenol溶液中,都没有观察到类似的空间条纹。在强光功率密度照射下,2-(4-羟基苯基)-5-嘧啶醇、4'-羟基-4-联苯基腈、3-氨基-4-苯基苯酚3个单晶体出现光斑畸变,同样在4,4'-双酚单晶中没有观察到光斑畸变。在激光照射下或无光照射时,测量到具有非对称基团的联苯衍生物样品的光电流与暗电流相差大约为10 nA。光斑畸变的伸长方向与激光的偏振态有关。在溶液和单晶样品中,光斑畸变的光功率密度的阈值分别是100 W/cm2和10 W/cm2。上述实验结果可认为对称的周期性明暗空间条纹是由光折变效应引起的,激光通过样品时,由于联苯衍生物的极性分子受光电场的作用,在光照区与非光照区产生空间电荷场,由该空间电荷场引起样品折射率变化,从而形成明暗相间的空间条纹。本文首次发现联苯衍生物是一种光折变材料。

     

  • Figure 1.  Shapes of single crystals

    Figure 2.  Schematic diagram of experimental setup for the photorefrative phenomenon

    Figure 3.  Cyclic symmetric bright-dark spatial stripes were observed in a biphenyl derivatives solution under the different levels of laser(532 nm) power irradiations

    Figure 4.  Cyclic symmetric bright-dark spatial stripes changed with the irradiated time at the same laser power(103 W/cm2) in the biphenyl derivatives solution

    Figure 5.  Transmitted beam distortions with Ar laser irradiation at a steady state:power density of 1×102 W/cm2, 6×102 W/cm2, 2×103 W/cm2, respectively, for the solution samples A, B, and C

    Figure 6.  Curves of the current changed with the laser power

    Figure 7.  Transmitted laser beam distortions with Ar laser irradiation at steady state:power density of 2.7 W/cm2, 10 W/cm2, 100 W/cm2, respectively, for single crystal samples A, B, and C

    Table  1.   Molecular structures of the experimental samples

    Sample Molecular Structure
    A:4, 4′-Biphenol
    B:4′-hydroxy-4-biphenylcarbonitrile
    C:2-(4-hydroxypheny)-5-pyrimidinol
    D:3-amino-4-phenylphenol
    Solvent:N, N-Dimethylformamide(DMF)
    下载: 导出CSV

    Table  2.   Photorefractive effect in biphyenyl derivatives threshold of laser power density

    Sample Solution Single crystal
    A:4, 4′-Biphenol No PR effect No PR effect
    B:4′-hydroxy-4-biphenylcarbonitrile 230 W/cm2 40 W/cm2
    C:2-(4-hydroxypheny)-5-pyrimidinol 150 W/cm2 20 W/cm2
    D:2-amino-4-phenylphenol 100 W/cm2 10 W/cm2
    Solvent:N, N-dimethylformamide(DMF) No PR effect No PReffect
    下载: 导出CSV
  • [1] 戴军, 陈景东, 何影记, 等.铜掺杂氧化锌纳米棒的非线性光学响应竞争特性[J].发光学报, 2017, 38(7):855-861. http://d.old.wanfangdata.com.cn/Periodical/fgxb201707003

    DAI J, CHEN J D, HE Y J, et al.. Competition in nonlinear optical properties of Cu-doped ZnO nanorods[J]. Chinese Journal of Luminescence, 2017, 38(7):855-861.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201707003
    [2] CICOIRA F, SANTATO C. Organic Electronics:Emerging Concepts and Technologies[M]. Weinheim:Wiley-VCH, 2013.
    [3] OSTROVERKHOVA O. Handbook of Organic Materials for Optical and (opto) Electronic Devices: Properties and Applications[M]. Cambridge:Woodhead Publishing, 2013:367-370.
    [4] SUN S S, DALTON L R. Introduction to Organic Electronic and Optoelectronic Materials and Devices[M]. 2nd ed. Boca Raton:CRC Press, 2016.
    [5] KÖHLER A, BÄSSLER H. Electronic Processes in Organic Semiconductors:An Introduction[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2015.
    [6] 龚梓博, 陆星, 施可彬, 等.光学频率梳非线性传输及其在相位噪声探测中的应用[J].中国光学, 2015, 8(1):39-44. http://www.chineseoptics.net.cn/CN/abstract/abstract9259.shtml

    GONG Z B, LU X, SHI K B, et al.. Nonlinear propagation of optical frequency comb and its application in phase noise detection[J]. Chinese Optics, 2015, 8(1):39-44.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9259.shtml
    [7] SUTTER K, HULLIGER J, GVNTER P. Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7, 7, 8, 8-tetracyanoquinodimethane[J]. Solid State Communications, 1990, 74(8):867-870. doi: 10.1016/0038-1098(90)90952-8
    [8] SUTTER K, GVNTER P. Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7, 7, 8, 8-tetracyanoquinodimethane[J]. Journal of the Optical Society of America B, 1990, 7(12):2274-2278. doi: 10.1364/JOSAB.7.002274
    [9] DUCHARME S, SCOTT J C, TWIEG R J, et al.. Observation of the photorefractive effect in a polymer[J]. Physical Review Letters, 1991, 66(14):1846-1849. doi: 10.1103/PhysRevLett.66.1846
    [10] MARINOVA V, LIU R C, LIN S G, et al.. Near-infrared sensitive organic-inorganic photorefractive device[J]. Optical Review, 2016, 23(5):811-816. doi: 10.1007/s10043-016-0244-4
    [11] LIU W, YANG H T, WU W B, et al.. Calix[4]resorcinarene-based branched macromolecules for all-optical photorefractive applications[J]. Journal of Materials Chemistry C, 2016, 4(45):10684-10690. doi: 10.1039/C6TC04062D
    [12] XU SH A, FANG CH, WU Y ZH, et al.. Photorefractive hyper-structured molecular glasses constructed by calix[4]resorcinarene core and carbazole-based methine nonlinear optical chromophore[J]. Dyes and Pigments, 2017, 142:8-16. doi: 10.1016/j.dyepig.2017.03.001
    [13] TSUJIMURA S, FUJIHARA T, SASSA T, et al.. Characterization of carrier transport and trapping in photorefractive polymer composites using photoemission yield spectroscopy in air[J]. Macromolecular Chemistry and Physics, 2016, 217(16):1785-1791. doi: 10.1002/macp.v217.16
    [14] OSTROVERKHOVA O. Organic optoelectronic materials: mechanisms and applications[J]. Chemical Reviews, 2016, 116(22):13279-13412. doi: 10.1021/acs.chemrev.6b00127
    [15] 秦沛, 任玉, 刘丽炜, 等.金属纳米颗粒等离激元共振增强非线性介质谐波的发展现状[J].中国光学, 2016, 9(2):213-225. http://www.chineseoptics.net.cn/CN/abstract/abstract9415.shtml

    QIN P, REN Y, LIU L W, et al.. Development of plasmon-resonance of metal nanoparticles enhanced harmonic generation in nonlinear medium[J]. Chinese Optics, 2016, 9(2):213-225.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9415.shtml
    [16] POPE M, SWENBERG C E. Electronic Processes in Organic Crystals and Polymers[M]. 2nd ed. New York:Oxford University Press, 1999.
    [17] MOON J S, KIM K, HAN D W, et al.. Recent progress in organic photorefractive materials[J]. Applied Spectroscopy Reviews, 2018, 53(2-4):203-223. doi: 10.1080/05704928.2017.1323307
    [18] LEO K. Elementary Processes in Organic Photovoltaics[M]. Cham:Science, 2017:272.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1658
  • HTML全文浏览量:  564
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-15
  • 修回日期:  2018-05-24
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回