留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Weak microcavity effect in tandem white organic light-emitting diodes employing an effective charge-generation layer of Liq/Al/HAT-CN

YU Ye LIN Wen-yan PENG Xue-kang JIN Yu WU Zhi-jun CHEN Yan

喻叶, 林雯嫣, 彭雪康, 金玉, 吴志军, 陈燕. 利用有效电荷产生层Liq/Al/HAT-CN的叠层有机白光器件中弱微腔效应的研究[J]. 中国光学(中英文), 2019, 12(2): 382-394. doi: 10.3788/CO.20191202.0382
引用本文: 喻叶, 林雯嫣, 彭雪康, 金玉, 吴志军, 陈燕. 利用有效电荷产生层Liq/Al/HAT-CN的叠层有机白光器件中弱微腔效应的研究[J]. 中国光学(中英文), 2019, 12(2): 382-394. doi: 10.3788/CO.20191202.0382
YU Ye, LIN Wen-yan, PENG Xue-kang, JIN Yu, WU Zhi-jun, CHEN Yan. Weak microcavity effect in tandem white organic light-emitting diodes employing an effective charge-generation layer of Liq/Al/HAT-CN[J]. Chinese Optics, 2019, 12(2): 382-394. doi: 10.3788/CO.20191202.0382
Citation: YU Ye, LIN Wen-yan, PENG Xue-kang, JIN Yu, WU Zhi-jun, CHEN Yan. Weak microcavity effect in tandem white organic light-emitting diodes employing an effective charge-generation layer of Liq/Al/HAT-CN[J]. Chinese Optics, 2019, 12(2): 382-394. doi: 10.3788/CO.20191202.0382

利用有效电荷产生层Liq/Al/HAT-CN的叠层有机白光器件中弱微腔效应的研究

基金项目: 

国家自然科学基金项目 61605049

国家自然科学基金项目 11674111

详细信息
    作者简介:

    喻叶(1995-), 女, 江苏淮安人, 硕士研究生, 主要从事有机电致发光器件的研究。E-mail:xiaolvyezi95@163.com

    陈燕(1981-), 女, 福建泉州人, 硕士, 讲师。2003年于南京邮电学院电子信息工程系获得工学学士学位, 2006年于北京大学信息科学技术学院获得工学硕士学位, 主要从事有机电致发光器件、有机光伏器件及有机薄膜晶体管方面研究。E-mail:goldency@hqu.edu.cn

  • 中图分类号: TN383+.1;TN312+.8

Weak microcavity effect in tandem white organic light-emitting diodes employing an effective charge-generation layer of Liq/Al/HAT-CN

doi: 10.3788/CO.20191202.0382
Funds: 

the National Natural Science Foundation of China 61605049

the National Natural Science Foundation of China 11674111

More Information
    Author Bio:

    YU Ye(1995—), female, Huai′an, Jiangsu, Master′s Degree Student, primarily engaged in OLED research. E-mail:xiaolvyezi95@163.com

    CHEN Yan(1981—), female, from Quanzhou, Fujian Province, Lecturer. In 2003, she obtained a bachelor′s degree in engineering from the Department of Electronic Information Engineering of Nanjing University of Posts and Telecommunications. In 2006, she obtained a master′s degree in Engineering from the School of Information Science and Technology of Peking University. Currently, she is mainly engaged in research on organic electroluminescent devices, organic photovoltaic devices and organic thin film transistors. E-mail:goldency@hqu.edu.cn

    Corresponding author: CHEN Yan, E-mail:goldency@hqu.edu.cn
  • 摘要: 本文使用电荷产生层Liq/Al/HAT-CN制备了蓝黄互补的叠层有机白光器件。通过比较叠层双色器件在相同电流密度下的发光光谱、亮度及电压,阐明了电荷产生层电荷产生及注入过程,并进一步研究了双层结构Liq/Al。在10 mA/cm2电流密度下,叠层白光器件的工作电压为8.3 V,亮度为746 cd/m2,分别为蓝光单节器件(4.2 V,315 cd/m2)与黄光单节器件(4.2 V,426 cd/m2)之和,证明了电荷产生层的有效性。当电流密度为240 mA/cm2时,叠层白光器件获得最高亮度11 420 cd/m2,在1 000 cd/m2的亮度下,电流效率为7.2 cd/A,功率效率为2.6 lm/W。驱动电流密度从10 mA/cm2增加到30 mA/cm2时,蓝光成分比例仅增加5%,证明器件发光性能稳定。针对叠层器件中存在的弱微腔效应,根据微腔理论,通过光学模拟计算进行了深入研究,模拟结果与实际光谱高度吻合,说明了光学模拟计算的准确性。

     

  • 图 1  电荷产生层在可见光区的透过率

    Figure 1.  Transmittance of the charge generation layer in the visible spectrum

    图 2  绿黄双色器件电致发光光谱

    Figure 2.  Electroluminescence spectra of the green-yellow dual-color device

    图 3  电荷产生层工作原理图

    Figure 3.  Working schematic of the charge-generating layer

    图 4  单电子器件的电流-电压特性

    Figure 4.  Ⅰ-Ⅴ characteristics of hole-excluded devices

    图 5  蓝光单色器件、黄光单色器件和叠层白光器件的光谱

    Figure 5.  Spectra of blue, orange and tandem white devices

    图 6  叠层白光器件电流效率和功率效率曲线

    Figure 6.  Current efficiency and power efficiency curves of the tandem white device

    图 7  单色器件与叠层白光器件的Ⅰ-Ⅴ和L-I特性曲线

    Figure 7.  Ⅰ-Ⅴ and L-I curves for the monochromatic device and the tandem white device

    图 8  不同电流密度下叠层白光器件电致发光光谱、色坐标、蓝光比例以及CRI

    Figure 8.  Electroluminescence spectra, color coordinates, blue light ratios and CRI of tandem white device at different current densities

    图 9  叠层器件发光特性随角度的变化

    Figure 9.  Luminous characteristics of tandem devices vary with angles

    图 10  叠层器件光谱随器件厚度的变化

    Figure 10.  Spectra of tandem devices vary with thickness of device

    图 11  0°和30°观测角度下实验与模拟光谱的比较

    Figure 11.  Comparison of experimental and simulated spectra at observation angles of 0° and 30°

    表  1  Luminous characteristics of the monochromatic device and the tandem device at current densities of 10 mA/cm2 and 20 mA/cm2.

    Table  1.   Luminous characteristics of the monochromatic device and the tandem device at current densities of 10 mA/cm2 and 20 mA/cm2.

    Voltage/V
    J=10/20
    (mA/cm2)
    Luminance/(cd·m-2)
    J=10/20
    (mA/cm2)
    DPVBi 4.2/4.5 315/603
    Rubrene 4.2/4.6 426/763
    Tandem white 8.3/8.9 746/1 378
    下载: 导出CSV
  • [1] FURNO M, MEERHEIM R, HOFMANN S, et al.. Efficiency and rate of spontaneous emission in organic electroluminescent devices[J]. Physical Review B, 2012, 85(11):115205. doi: 10.1103/PhysRevB.85.115205
    [2] KIDO J, HONGAWA K, OKUYAMA K, et al.. White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes[J]. Applied Physics Letters, 1994, 64(7):815-817. doi: 10.1063/1.111023
    [3] REINEKE S, LINDNER F, SCHWARTZ G, et al.. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009, 459(7244):234-238. doi: 10.1038/nature08003
    [4] WANG Q, DING J Q, MA D G, et al.. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: fabrication and emission-mechanism analysis[J]. Advanced Functional Materials, 2009, 19(1):84-95. doi: 10.1002/adfm.v19:1
    [5] LI Y, XU K, WEN X M, et al.. High general and special color rendering index white organic light-emitting device with bipolar homojunction emitting layers[J]. Organic Electronics, 2013, 14(8):1946-1951. doi: 10.1016/j.orgel.2013.04.027
    [6] CHIBA T, PU Y J, KIDO J. Organic Light-emitting Devices with Tandem Structure[M]. Photoluminescent Materials and Electroluminescent Devices. Cham: Springer, 2017: 357-373.
    [7] 刘新辉, 杨健君, 于军胜.空穴阻挡中间层的加入对WOLEDs光谱稳定性的提高[J].发光学报, 2015, 36(10):1145-1149. http://d.old.wanfangdata.com.cn/Periodical/fgxb201510008

    LIU X H, YANG J J, YU J SH. Enhancement of WOLEDs spectral stability by adding hole-blocking interlayer[J]. Chinese Journal of Luminescence, 2015, 36(10):1145-1149.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201510008
    [8] PARK J W, SHIN D C, PARK S H. Large-area OLED lightings and their applications[J]. Semiconductor Science and Technology, 2011, 26(3):034002. doi: 10.1088/0268-1242/26/3/034002
    [9] CHEN P, XUE Q, XIE W F, et al.. Influence of interlayer on the performance of stacked white organic light-emitting devices[J]. Applied Physics Letters, 2009, 95(12):123307. doi: 10.1063/1.3234379
    [10] BAO Q Y, YANG J P, TANG J X, et al.. Interfacial electronic structures of WO3-based intermediate connectors in tandem organic light-emitting diodes[J]. Organic Electronics, 2010, 11(9):1578-1583. doi: 10.1016/j.orgel.2010.07.009
    [11] TSUTSUI T, TERAI M. Electric field-assisted bipolar charge spouting in organic thin-film diodes[J]. Applied Physics Letters, 2004, 84(3):440-442. doi: 10.1063/1.1640470
    [12] LIAO L S, SLUSAREK W K, HATWAR T K, et al.. Tandem organic light-emitting diode using hexaazatriphenylene hexacarbonitrile in the intermediate connector[J]. Advanced Materials, 2008, 20(2):324-329. doi: 10.1002/(ISSN)1521-4095
    [13] LIU J, WANG J, HUANG S J, et al.. A highly efficient, transparent and stable charge generation unit based on a p-doped monolayer[J]. Organic Electronics, 2013, 14(5):1337-1343. doi: 10.1016/j.orgel.2013.02.035
    [14] SOON M P, YOON H K, YEON J Y, et al.. Insertion of an organic interlayer for hole current enhancement in inverted organic light emitting devices[J]. Applied Physics Letters, 2010, 97(6):063308. doi: 10.1063/1.3478007
    [15] ZHENG X Y, WU Y ZH, SUN R G, et al.. Efficiency improvement of organic light-emitting diodes using 8-hydroxy-quinolinato lithium as an electron injection layer[J]. Thin Solid Films, 2005, 478(1-2):252-255. doi: 10.1016/j.tsf.2004.08.020
    [16] SEO J H, LEE S J, SEO B M, et al.. White organic light-emitting diodes showing nearly 100% internal quantum efficiency[J]. Organic Electronics, 2010, 11(11):1759-1766. doi: 10.1016/j.orgel.2010.07.015
    [17] 于瑶瑶, 喻叶, 林雯嫣, 等.高效率N掺杂有机电致发光器件的研制[J].发光学报, 2018, 39(3):315-321. http://d.old.wanfangdata.com.cn/Periodical/fgxb201803009

    YU Y Y, YU Y, LIN W Y, et al.. Highly efficient N-doped organic light-emitting devices[J]. Chinese Journal of Luminescence, 2018, 39(3):315-321.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201803009
    [18] BURROWS P E, KHALFIN V, GU G, et al.. Control of microcavity effects in full color stacked organic light emitting devices[J]. Applied Physics Letters, 1998, 73(4):435-437. doi: 10.1063/1.121891
    [19] 张春玉, 王庆凯, 秦莉, 等.微腔有机电致发光器件角度依赖性的模拟与实验验证[J].发光学报, 2015, 36(4):454-458. http://d.old.wanfangdata.com.cn/Periodical/fgxb201504015

    ZHANG CH Y, WANG Q K, QIN L, et al.. Simulation and experimental verification for the angle dependence of the microcavity organic light emitting device[J]. Chinese Journal of Luminescence, 2015, 36(4):454-458.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201504015
    [20] POITRAS D, KUO C C, PY C. Design of high-contrast OLEDs with microcavity effect[J]. Optics Express, 2008, 16(11):8003-8015. doi: 10.1364/OE.16.008003
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2104
  • HTML全文浏览量:  848
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-11
  • 修回日期:  2018-07-13
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回