留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Internal profile reconstruction of microstructures based on near-infrared light transmission reflection interferometry with optical path compensation

SHI Jian-hua HAN Bing-chen

史健华, 韩丙辰. 光程补偿近红外光透射反射干涉重构微结构内部形貌[J]. 中国光学(中英文), 2019, 12(2): 395-404. doi: 10.3788/CO.20191202.0395
引用本文: 史健华, 韩丙辰. 光程补偿近红外光透射反射干涉重构微结构内部形貌[J]. 中国光学(中英文), 2019, 12(2): 395-404. doi: 10.3788/CO.20191202.0395
SHI Jian-hua, HAN Bing-chen. Internal profile reconstruction of microstructures based on near-infrared light transmission reflection interferometry with optical path compensation[J]. Chinese Optics, 2019, 12(2): 395-404. doi: 10.3788/CO.20191202.0395
Citation: SHI Jian-hua, HAN Bing-chen. Internal profile reconstruction of microstructures based on near-infrared light transmission reflection interferometry with optical path compensation[J]. Chinese Optics, 2019, 12(2): 395-404. doi: 10.3788/CO.20191202.0395

光程补偿近红外光透射反射干涉重构微结构内部形貌

基金项目: 

国家自然科学基金青年基金 11705107

山西省科技攻关项目 2015031002-1

山西大同大学博士学位研究基金 2014B15

详细信息
    作者简介:

    史健华:史建华(1978—),男,副教授,山西宁武人,硕士研究生学历,硕士学位,现任教学评估与督导中心副主任、物电学院教师,主要从事光学干涉及图像处理方面的研究。E-mail:shijianhua_dtdx@163.com

  • 中图分类号: O435.1

Internal profile reconstruction of microstructures based on near-infrared light transmission reflection interferometry with optical path compensation

doi: 10.3788/CO.20191202.0395
Funds: 

the National Natural Science Foundation Youth Foundation of China(NSFC) 11705107

the Science and Technology Infrastructure Program of the Ministry of Science and Technology of Shanxi Province, China 2015031002-1

the Shanxi Datong University Research Foundation for Ph. D. 2014B15

More Information
    Author Bio:

    SHI Jian-hua(1978—), male, Associate Professor, from Ningwu County, Shanxi Province, Master′s Research Degree. Present:Deputy Director of the Teaching Evaluation and Supervision Center, and teacher at the Institute of Physics and Energy, mainly engaged in the research of optical processing involving image processing. E-mail:shijianhua_dtdx@163.com

    Corresponding author: SHI Jian-hua, E-mail:shijianhua_dtdx@163.com
  • 摘要: 高深宽比微结构的底部及侧壁形貌重构是微机电系统领域亟待解决的一个问题。本文提出光程补偿近红外光透射反射干涉技术重构微结构内部形貌的方法,所采用的近红外光干涉技术将白光干涉系统中的光源扩展至近红外光源,将反射干涉技术扩展至透射反射干涉技术,近红外光干涉测量系统由近红外光光源、干涉显微镜、红外光CCD、高精度压电陶瓷和数据采集系统组成。设计了具有两个台阶的GaAs半导体微结构待测样品,采用近红外光垂直扫描干涉法并通过光程补偿,重构了微结构的内部三维形貌,并与扫描电镜结果进行对比。光程补偿近红外光透射反射干涉技术测量的台阶相对高度分别为2.132 μm和0.766 μm,与扫描电镜和近红外光反射干涉测量结果基本一致,分别对应2.16%和2.68%的相对误差。测量结果表明,该测量系统能够测量高深宽比微结构底部及侧壁形貌。

     

  • 图 1  近红外光透射反射干涉仪测量高深宽比微结构底部及侧壁形貌

    Figure 1.  Bottom and side wall profile reconstruction of the microstructure with high aspect ratio measured by the near-Infrared light transmission reflection interferometer

    图 2  近红外光干涉系统示意图

    Figure 2.  Schematic of near-infrared light interferometer

    图 3  测量样品结构图:俯视图和剖面图

    Figure 3.  Structure of the test object: the top view and the cross-section

    图 4  近红外光反射干涉测量结果

    Figure 4.  Measurement results with near-infrared light reflection interference

    图 5  光程补偿近红外透射反射干涉测量结果

    Figure 5.  Measurement results using near-infrared light transmission reflection interference with optical path compensation

    表  1  Comparison of relative step heights for different measurement methods

    Table  1.   Comparison of relative step heights for different measurement methods

    Measurement method Step A/μm Error/% Step B/μm Error/%
    SEM 2.087 0.746
    Near-infrared light reflection interference 2.107 0.96 0.759 1.74
    Near-infrared transmission interference 2.132 2.16 0.766 2.68
    下载: 导出CSV
  • [1] TOTSU K, FUJISHIRO K, TANAKA S, et al.. Fabrication of three-dimensional microstructure using maskless gray-scale lithography[J]. Sensors and Actuators A:Physical, 2006, 130-131:387-392. doi: 10.1016/j.sna.2005.12.008
    [2] ZHANG T, GAO F, JIANG X Q. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry[J]. Optics Express, 2017, 25(20):24148-24156. doi: 10.1364/OE.25.024148
    [3] HOU P X, LIU C, CHENG H M. Field Emission from Carbon Nanotubes[M]. Nanomaterials Handbook. 2nd Ed. CRC Press, 2017: 255-272.
    [4] MORITA S, GIESSIBL F J, MEYER E, et al.. Noncontact Atomic Force Microscopy[M]. Berlin:Springer, 2015.
    [5] 董恺琛, 娄帅, 姚杰, 等.脉冲激光沉积薄膜的残余应力测量[J].光学 精密工程, 2018, 26(1):70-76. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201801011.htm

    DONG K CH, LOU SH, YAO J, et al.. Measurement of residual stresses in pulsed laser deposited thin films[J]. Opt. Precision Eng., 2018, 26(1):70-76.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201801011.htm
    [6] TSUDA Y, KITASAKO Y, SADR A, et al.. Effects of brushing timing after erosive challenge on enamel loss in situ: White light interferometer and nanoindentation study[J]. Dental Materials Journal, 2016, 35(4) 613-620. doi: 10.4012/dmj.2015-405
    [7] DAO T, THOMAS T, MARX D, et al.. Evaluation of non-destructive etch depth measurement for through silicon vias[C]. 2012 IEEE International Conference on IC Design & Technology, IEEE, 2012: 1-4.
    [8] ZHOU Y F, CAI H ZH, ZHONG L Y, et al.. Eliminating the influence of source spectrum of white light scanning interferometry through time-delay estimation algorithm[J]. Optics Communications, 2017, 391:1-8. doi: 10.1016/j.optcom.2016.12.006
    [9] XUE CH Y, LIU J, CHOU X J, et al.. White-light transmission reflection interference technology application in three-dimensional reconstruction method validation for microstructures[C]. Proceedings of the 3rd International Congress on Image and Signal Processing, IEEE, 2010, 2: 867-870.
    [10] 刘燕德, 万常斓.芝麻油掺伪的近红外透射光谱检测技术[J].农业机械学报, 2012, 43(7):136-140. doi: 10.6041/j.issn.1000-1298.2012.07.025

    LIU Y D, WAN CH L. Analysis of sesame oil adulteration using near infrared transmission spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(7):136-140.(in Chinese) doi: 10.6041/j.issn.1000-1298.2012.07.025
    [11] 秦五昌, 汤修映, 彭彦昆, 等.基于可见/近红外透射光谱的孵化早期受精鸡蛋的判别[J].光谱学与光谱分析, 2017, 37(1):200-204. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201701044.htm

    QIN W CH, TANG X Y, PENG Y K, et al.. Identification of fertilized chicken eggs based on visible/near-infrared spectrum during early stage of incubation[J]. Spectroscopy and Spectral Analysis, 2017, 37(1):200-204.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201701044.htm
    [12] THOMAS D J. 3D white light interferometry assessment of robotic laser scalpel assisted surgery to minimise scar tissue formation[J]. International Journal of Surgery, 2017, 38:117-118. doi: 10.1016/j.ijsu.2016.12.037
    [13] XIAO Y, QIU L R, ZHAO W Q. Laser confocal cylindrical radius measurement method and its system[J]. Applied Optics, 2017, 56(23):6596-6602. doi: 10.1364/AO.56.006596
    [14] TAPILOUW A M, CHANG Y W, YU L Y, et al.. Reduction of batwing effect in white light interferometry for measurement of patterned sapphire substrates(PSS) wafer[J]. Proceedings of SPIE, 2016, 9960:996006. doi: 10.1117/12.2236874
    [15] TERESCHENKO S, LEHMANN P, GOLLOR P, et al.. Vibration compensated high-resolution scanning white-light Linnik-interferometer[J]. Proceedings of SPIE, 2017, 10329:1032940. doi: 10.1117/12.2270226
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1623
  • HTML全文浏览量:  421
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-05
  • 修回日期:  2018-07-13
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回