留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Link performance evaluation for air-sea free-space optical communications

LI Jun YUAN Xiu-hua WANG Ming-hao

李军, 元秀华, 王铭淏. 空潜自由空间光通信的链路性能评估[J]. 中国光学(中英文), 2019, 12(2): 405-412. doi: 10.3788/CO.20191202.0405
引用本文: 李军, 元秀华, 王铭淏. 空潜自由空间光通信的链路性能评估[J]. 中国光学(中英文), 2019, 12(2): 405-412. doi: 10.3788/CO.20191202.0405
LI Jun, YUAN Xiu-hua, WANG Ming-hao. Link performance evaluation for air-sea free-space optical communications[J]. Chinese Optics, 2019, 12(2): 405-412. doi: 10.3788/CO.20191202.0405
Citation: LI Jun, YUAN Xiu-hua, WANG Ming-hao. Link performance evaluation for air-sea free-space optical communications[J]. Chinese Optics, 2019, 12(2): 405-412. doi: 10.3788/CO.20191202.0405

空潜自由空间光通信的链路性能评估

基金项目: 

国家自然科学基金:新型部分相干光束合成机理与方法及其抗大气湍流特性的研究 61275081

详细信息
  • 中图分类号: O439

Link performance evaluation for air-sea free-space optical communications

doi: 10.3788/CO.20191202.0405
Funds: 

National Natural Science Foundation of China:Synthesis of Novel Partially Coherent Beams and Research on Their Resilience to Atmospheric Turbulence 61275081

More Information
    Author Bio:

    LI Jun (1978-), male, Jingzhou, Hubei.In 2012, he received his master's degree from Yangtze University.Since 2013, he has been a PhD student in School of Optical and Electronic Information at Huazhong University of Science and Technology.Research area:free-space optical communications.E-mail:52223894@qq.com

    YUAN Xiu-hua (1957-), male, Professor at Huazhong University of Science and Technology.Research area:Optical communication device and system technology; Space optical detection technology and new adaptive optics technology; Photoelectric sensing technologies.E-mail:yuanxh@hust.edu.cn

    Corresponding author: YUAN Xiu-hua, E-mail:yuanxh@hust.edu.cn
  • 摘要: 长期以来,空中平台与水下平台之间的有效通信一直是一个具有挑战性的课题,因为声波或电磁波只能有效地仅在海水或空气中传播,而无法同时在这两种介质中高效传输数据。相比电磁波,激光束能够穿透相当深度的海水,因而自由空间光通信被认为是一种很好的空潜通信替代手段。众所周知,吸收和散射引起的衰减是水下激光传播主要不利因素之一,然而这只能通过加大发射功率来补偿。尽管如此,即使发射功率大到能够保证一定的接收机灵敏度,大气和海洋湍流引起的光强起伏也会在很大程度上降低链路性能。本文重点研究水下载具与空中平台之间的自由空间光通信链路中的湍流效应,利用波动光学仿真,研究高斯光束和环形光束在空-潜两段链路中的传播,并根据数值结果对上行链路和下行链路之间的性能差异进行了比较说明。总体来说,由于湍流的主要部分离发射机更近,上行链路更容易受到湍流的影响。此外,研究中还发现环形光束往往能产生较小的闪烁指数和较高的信噪比。本项工作能够为未来的空潜光通信系统的研究和发展提供有益的参考。

     

  • Figure 1.  Air-sea two-section optical link model

    Figure 2.  Comparison of Gaussian beam and annular beam with equal power

    Figure 3.  Beam wanders of the Gaussian beam and the annular beam in (a)uplink, (b)downlink

    Figure 4.  Scintillation index versus receiver aperture diameter D for (a)1 km uplink, (b)2 km uplink, (c)5 km uplink, (d)1 km downlink, (e)2 km downlink, (f)5 km downlink

    Figure 5.  Probability of fade versus receiver aperture diameter D for (a)1 km uplink, (b)2 km uplink, (c)5 km uplink, (d)1 km downlink, (e)2 km downlink, (f)5 km downlink

    Figure 6.  Mean SNR versus receiver aperture diameter D for (a)1 km uplink, (b)2 km uplink, (c)5 km uplink, (d)1 km downlink, (e)2 km downlink, (f)5 km downlink

  • [1] MAKAVITA C D, JAYASINGHE S G, NGUYEN H D, et al.. Experimental study of command governor adaptive control for unmanned underwater vehicles[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1):332-345. doi: 10.1109/TCST.2017.2757021
    [2] SEDAGHATI S, ABDOLLAHI F, KHORASANI K. Model predictive and non-cooperative dynamic game fault recovery control strategies for a network of unmanned underwater vehicles[J]. International Journal of Control, 2017, doi: 10.1080/00207179.2017.1360517.
    [3] PREISIG J. Acoustic propagation considerations for underwater acoustic communications network development[C]. ACM International Workshop on Underwater Networks, ACM, 2006: 1-5.
    [4] CHITRE M, POTTER J, HENG O S. Underwater acoustic channel characterisation for medium-range shallow water communications[C]. Oceans '04. MTS/IEEE Techno-Ocean, IEEE, 2004: 40-45.
    [5] RATNI B, DE LUSTRAC A, PIAU G P, et al.. Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas[J]. Optics Express, 2018, 26(3):2613-2624. doi: 10.1364/OE.26.002613
    [6] ZHANG D, HAO SH Q, ZHAO Q S, et al.. Wavefront reconstruction method based on wavelet fractal interpolation for coherent free space optical communication[J]. Optics Communications, 2018, 410:723-729. doi: 10.1016/j.optcom.2017.11.021
    [7] ELAMASSIE M, UYSAL M, BAYKAL Y, et al.. Effect of eddy diffusivity ratio on underwater optical scintillation index[J]. Journal of the Optical Society of America A, 2017, 34(11):1969-1973. doi: 10.1364/JOSAA.34.001969
    [8] BORAH D K, VOELZ D G. Spatially partially coherent beam parameter optimization for free space optical communications[J]. Optics Express, 2010, 18(20):20746-20758. doi: 10.1364/OE.18.020746
    [9] WANG M H, YUAN X H, MA D L. Potentials of radial partially coherent beams in free-space optical communication: a numerical investigation[J]. Applied Optics, 2017, 56(10):2851-2857. doi: 10.1364/AO.56.002851
    [10] ZHU X M, KAHN J M. Free-space optical communication through atmospheric turbulence channels[J]. IEEE Transactions on Communications, 2002, 50(8):1293-1300. doi: 10.1109/TCOMM.2002.800829
    [11] GERÇEKCIOǦLU H, BAYKAL Y, NAKIBOǦLU C. Annular beam scintillations in strong turbulence[J]. Journal of the Optical Society of America A, 2010, 27(8):1834-1839. doi: 10.1364/JOSAA.27.001834
    [12] JI X L, CHEN H, JI G M. Characteristics of annular beams propagating through atmospheric turbulence along a downlink path and an uplink path[J]. Applied Physics B, 2016, 122(8):221. doi: 10.1007/s00340-016-6491-z
    [13] EYYUBOǦLU H T, ALTAY S, BAYKAL Y. Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence[J]. Optics Communications, 2006, 264(1):25-34. doi: 10.1016/j.optcom.2006.02.030
    [14] LI X Q, JI X L. Propagation characteristics of decentered annular beams through non-Kolmogorov turbulence[J]. Journal of the Optical Society of America A, 2014, 31(1):172-182. doi: 10.1364/JOSAA.31.000172
    [15] CYWIAK M, CYWIAK D, YÁÑEZ E. Finite Gaussian wavelet superposition and Fresnel diffraction integral for calculating the propagation of truncated, non-diffracting and accelerating beams[J]. Optics Communications, 2017, 405:132-142. doi: 10.1016/j.optcom.2017.08.015
    [16] FESHCHENKO R M, VINOGRADOV A V, ARTYUKOV I A. Propagation of waves from an arbitrary shaped surface-a generalization of the Fresnel diffraction integral[J]. Optics Communications, 2018, 413:291-294. doi: 10.1016/j.optcom.2017.12.070
    [17] DWIVEDI G, SHARMA A, DEBNATH S, et al.. Comparison of numerical reconstruction of digital holograms using angular spectrum method and Fresnel diffraction method[J]. Journal of Optics, 2017, doi: 10.1007/s12596-017-0424-z.
    [18] CHEN SH G, ZHANG T L, HU L B, et al.. Vertical variations in optical properties of the waters in the Yellow Sea and Bohai Sea at seasonal scales and their influencing mechanisms[J]. Optics Express, 2018, 26(4):4112-4134. doi: 10.1364/OE.26.004112
    [19] NIKISHOV V V, NIKISHOV V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1):82-98. doi: 10.1615/InterJFluidMechRes.v27.i1
    [20] SCHMIDT J D. Numerical simulation of optical wave propagation with examples in MATLAB[J]. Proceedings of SPIE, 2010, PM199:212. https://www.researchgate.net/publication/303725548_Numerical_simulation_of_optical_wave_propagation_With_examples_in_MATLAB
    [21] ANDREWS L C, PHILIPS R L. Laser Beam Propagation Through Random Media[M]. 2nd ed. Bellingham, WA:SPIE, 2005.
  • 加载中
图(6)
计量
  • 文章访问数:  1568
  • HTML全文浏览量:  556
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-16
  • 修回日期:  2018-06-12
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回