留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

板条激光器光束质量控制技术研究进展

闫钰锋 于洋 白素平 倪小龙 张晖 于信

闫钰锋, 于洋, 白素平, 倪小龙, 张晖, 于信. 板条激光器光束质量控制技术研究进展[J]. 中国光学(中英文), 2019, 12(4): 767-782. doi: 10.3788/CO.20191204.0767
引用本文: 闫钰锋, 于洋, 白素平, 倪小龙, 张晖, 于信. 板条激光器光束质量控制技术研究进展[J]. 中国光学(中英文), 2019, 12(4): 767-782. doi: 10.3788/CO.20191204.0767
YAN Yu-feng, YU Yang, BAI Su-ping, NI Xiao-long, ZHANG Hui, YU Xin. Progress on beam quality control technology of slab lasers[J]. Chinese Optics, 2019, 12(4): 767-782. doi: 10.3788/CO.20191204.0767
Citation: YAN Yu-feng, YU Yang, BAI Su-ping, NI Xiao-long, ZHANG Hui, YU Xin. Progress on beam quality control technology of slab lasers[J]. Chinese Optics, 2019, 12(4): 767-782. doi: 10.3788/CO.20191204.0767

板条激光器光束质量控制技术研究进展

doi: 10.3788/CO.20191204.0767
基金项目: 

吉林省科技厅重点科技研发项目 20180201016GX

详细信息
    作者简介:

    闫钰锋(1978—),男,吉林长春人,博士,副教授,博士生导师,主要从事精密仪器设计及光电检测方面的研究。E-mail:yanyufeng_cust@126.com

    于信(1988—),男,吉林四平人,博士,讲师,主要从事像差检测、校正及精密仪器设计方面的研究。E-mail:41213100@qq.com

  • 中图分类号: TN248.1

Progress on beam quality control technology of slab lasers

Funds: 

Key Science and Technology R&D Project of Jilin Provincial Science and Technology Department 20180201016GX

More Information
  • 摘要: 随着激光二极管技术的发展,以及一些先进热管理方案和新型加工工艺的涌现,固体激光器的输出功率已达到百千瓦量级,而光束质量的控制问题却日益凸显。本文归纳了板条激光器的光束质量控制技术,对当前已经实现了的几种技术路线进行了深入细致的分析,包括静态相位校正技术、非线性光学校正技术、自适应光学校正技术、几何光学校正技术等,并分别介绍了其工作原理、研究进展以及优缺点。

     

  • 图 1  静态相位校正工作原理示意图

    Figure 1.  Principle schematic of static phase corrector

    图 2  像差补偿前(a)和像差补偿后(b)的远场光斑图

    Figure 2.  Profiles at the Fourier plane without(a) and with(b) phase correction

    图 3  “之”字形板条激光器原理示意图

    Figure 3.  Schematic diagram of the zigzag-type slab laser

    图 4  MOPA结构示意图

    Figure 4.  Structural schematic of the MOPA

    图 5  互易式自校正谐振腔原理示意图

    Figure 5.  Schematic diagram of reciprocal self-correcting resonator

    图 6  非互异性自校正谐振腔示意图

    Figure 6.  Schematic of nonreciprocal resonator with self-correcting

    图 7  自适应光学校正技术原理示意图

    Figure 7.  Schematic of AO system

    图 8  诺·格公司百千瓦相干合成实验原理图

    Figure 8.  Schematic of the 100kW coherently combined laser system

    图 9  无波前探测AO像差校正的实验原理图

    Figure 9.  Schematic of the wave-front sensor-less AO system

    图 10  腔内像差补偿系统原理图

    Figure 10.  Principle diagram of intracavity aberration compensation system

    图 11  离轴三反像差校正系统实验原理图

    Figure 11.  Principle diagram of offaxis tri-inversion aberration correction sytsem

    图 12  MOPA激光器混合式像差校正系统示意图

    Figure 12.  Schematic of the hybrid AO syetem for the MOPA laser

    图 13  混合式像差校正系统.

    Figure 13.  Schematic of the hybrid AO syetem

    表  1  AO系统进行像差校正的代表性成果

    Table  1.   Representative results of aberration correction used by AO system

    年份 单位 功率 光束质量
    2007 诺·格公司 15 kW(平均) 1.28×DL
    2009 诺·格公司 100 kW(平均) 2.9×DL
    2012 中科院光电所 265 W(平均) 6.2×DL(β)
    2013 国防科技大学 11.3 kW(平均) 4.06×DL(β)
    2015 中科院理化所 8.2 kW(平均) 3.5×DL(β)
    2018 中科院光电所 750 MW(峰值) 1.64×DL(β)
    下载: 导出CSV
  • [1] 周寿桓, 赵鸿, 唐小军.高平均功率全固态激光器[J].中国激光, 2009, 36(7):1605-1618. http://d.old.wanfangdata.com.cn/Periodical/zgjg200907002

    ZHOU SH H, ZHAO H, TANG X J. High average power laser diode pumped solid-state laser[J]. Chinese Journal of Lasers, 2009, 36(7):1605-1618.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgjg200907002
    [2] 李晋闽.高平均功率全固态激光器发展现状、趋势及应用[J].激光与光电子学进展, 2008, 45(7):16-29. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200807004

    LI J M. Development, trend and application of high average power diode pumped lasers[J]. Laser & Optoelectronics Progress, 2008, 45(7):16-29.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200807004
    [3] MARTIN W S, CHERNOCH J P. Multiple internal reflection face-pumped laser: US, 3633126[P].1972-01-04.
    [4] CHEN X M, XU L, HU H, et al.. High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature[J]. Optics Express, 2016, 24(21):24517-24523. doi: 10.1364/OE.24.024517
    [5] GOODNO G D, PALESE S, HARKENRIDER J, et al.. Yb:YAG power oscillator with high brightness and linear polarization[J]. Optics Letters, 2001, 26(21):1672-1674. doi: 10.1364/OL.26.001672
    [6] REDMOND S, MCNAUGHT S, ZAMEL J, et al.. 15 kW near-diffraction-limited single-frequency Nd: YAG laser[C]. Proceedings of 2007 Conference on Lasers and Electro-Optics, IEEE, 2007: 1-2.
    [7] MAO Y F, ZHANG H L, CUI J H, et al.. 25 MJ, 5 kHz, 3 ns, Nd:YAG discrete path slab ampliter using a hybrid resonator[J]. Appl. Opt., 2017, 56(10):2741-2744. doi: 10.1364/AO.56.002741
    [8] 王建磊, 李磊, 乔亮, 等.端面抽运复合Nd:YAG陶瓷板条激光介质温度和应力分布的理论分析[J].中国激光, 2009, 36(7):1777-1783. http://d.old.wanfangdata.com.cn/Periodical/zgjg200907029

    WANG J L, LI L, QIAO L, et al.. Theoretical analysis of temperature and stress distribution in end-pumped composite ceramic Nd:YAG laser slab[J]. Chinese Journal of Lasers, 2009, 36(7):1777-1783.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgjg200907029
    [9] 陈林, 贺少勃, 刘建国, 等.新一代百千瓦高平均功率板条激光器研究进展[J].激光与光电子学进展, 2009, 46(1):37-42. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200901007

    CHEN L, HE SH B, LIU J G, et al.. Progress of hundred-kilowatt high-average-power slab laser[J]. Laser & Optoelectronics Progress, 2009, 46(1):37-42.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200901007
    [10] INJEYAN H, GOODNO G D. High Power Laser Handbook[M]. New York:McGraw-Hill Professional, 2011:187-200.
    [11] 靳强, 魏晓羽, 高健存, 等.连续16 W二极管端面泵浦混合腔Nd:YVO4板条激光器[J].量子电子学报, 2005, 22(4):528-533. doi: 10.3969/j.issn.1007-5461.2005.04.008

    JIN Q, WEI X Y, GAO J C, et al.. Diode end pumped hybrid cavity Nd:YVO4 slab laser[J]. Chinese Journal of Quantum Electronics, 2005, 22(4):528-533.(in Chinese) doi: 10.3969/j.issn.1007-5461.2005.04.008
    [12] MA X H, BI J Z, HOU X, et al.. Conductively cooled all-solid-state zigzag slab laser[J]. Chinese Optics Letters, 2008, 6(5):366-368. doi: 10.3788/COL20080605.0366
    [13] CHEN ZH ZH, XU Y T, GUO Y D, et al.. 8.2 kW high beam quality quasi-continuous-wave face-pumped Nd:YAG slab amplifier[J]. Applied Optics, 2015, 54(16):5011-5015. doi: 10.1364/AO.54.005011
    [14] CHEN Y, LIU W, BO Y, et al.. High-efficiency high-power QCW diode-side-pumped zigzag Nd:YAG ceramic slab laser[J]. Applied Physics B, 2013, 111(1):111-116. doi: 10.1007/s00340-012-5313-1
    [15] 雷翔.板条固体激光器光束净化控制技术研究[D].成都: 中国科学院研究生院(光电技术研究所), 2013: 13-20. http://cdmd.cnki.com.cn/Article/CDMD-80151-1013026490.htm

    LEI X. Research on beam cleanup of slab lasers[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2013: 13-20.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80151-1013026490.htm
    [16] BANERJEE S, ERTEL K, MASON P D, et al.. DiPOLE:a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser[J]. Optics Express, 2015, 23(15):19542-19551. doi: 10.1364/OE.23.019542
    [17] HUANG Y, MENG J Q, ZHANG L L, et al.. The analysis of the thermal effects of double-slab Nd:YAG laser medium[J]. Proceedings of SPIE, 2005, 5627:397-405. doi: 10.1117/12.573590
    [18] GANIJA M, OTTAWAY D, VEITCH P, et al.. Cryogenic, high power, near diffraction limited, Yb:YAG slab laser[J]. Optics Express, 2013, 21(6):6973-6978. doi: 10.1364/OE.21.006973
    [19] HOU X, LU Y T. Thermal effects of Diode side-pumped solid-state slab laser[J]. Proceedings of SPIE, 2005, 5627:510-516. doi: 10.1117/12.576044
    [20] ERTEL K, BANERJEE S, MASON P D, et al.. Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation[J]. Optics Express, 2011, 19(27):26610-26626. doi: 10.1364/OE.19.026610
    [21] YANG Q, ZHU X L, MA J, et al.. Diode-pumped Nd:YLF slab master oscillator power amplifier laser system with 655 mJ output at 50 Hz repetition rate[J]. Chinese Optics Letters, 2015, 13(6):061401. doi: 10.3788/COL201513.061401
    [22] CHENG X J, XU J Q, HANG Y, et al.. High-power diode-end-pumped Tm:YAP and Tm:YLF slab lasers[J]. Chinese Optics Letters, 2011, 9(9):091406. doi: 10.3788/COL201109.091406
    [23] FU X, LI P L, LIU Q, et al.. 3 kW liquid-cooled elastically-supported Nd:YAG multi-slab CW laser resonator[J]. Optics Express, 2014, 22(15):18421-18432. doi: 10.1364/OE.22.018421
    [24] SIEBOLD M, LOESER M, HARZENDORF G, et al.. High-energy diode-pumped D2O-cooled multislab Yb:YAG and Yb:QX-glass lasers[J]. Optics Letters, 2014, 39(12):3611-3614. doi: 10.1364/OL.39.003611
    [25] 赵爽.高功率高光束质量全固态板条激光器的研究[D].济南: 山东大学, 2010: 21-27. http://cdmd.cnki.com.cn/Article/CDMD-10422-2010099594.htm

    ZHAO SH. Study on high power and high beam quality solid-state slab laser[D]. Ji'nan: Shandong University, 2010: 21-27.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10422-2010099594.htm
    [26] RUTHERFORD T S, TULLOCH W M, SINHA S, et al.. Yb:YAG and Nd:YAG edge-pumped slab lasers[J]. Optics Letters, 2001, 26(13):986-988. doi: 10.1364/OL.26.000986
    [27] 刘欢, 李青华, 高松, 等.角抽运复合板条激光器热焦距计算方法[J].中国激光, 2012, 39(6):0602008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201206008

    LIU H, LI Q H, GAO S, et al.. Theoretical study on thermal focal length of corner-pumped lasers[J]. Chinese Journal of Lasers, 2012, 39(6):0602008.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201206008
    [28] WANG J L, SHI X CH, YIN L, et al.. Derivation and analysis of frantz-nodvik equation for face-pumped zig-zag slab laser amplifier[C]. Proceedings of 2009 Conference on Lasers & Electro Optics & the Pacific Rim Conference on Lasers and Electro-Optics, IEEE, 2009: 1-2.
    [29] PALESE S, HARKENRIDER J, LONG W, et al.. High brightness, end-pumped, conduction cooled Nd: YAG zig-zag slab laser architecture[C]. Proceedings of Advanced Solid State Lasers 2001, Optical Society of America, 2001.
    [30] LIU H, LIU Q, GONG M L. Efficient corner-pumped Nd:YAG/YAG composite slab 1.1μm laser[J]. Optics Express, 2010, 18(19):19603-19611. doi: 10.1364/OE.18.019603
    [31] KÖRNER J, HEIN J, KAHLE M, et al.. High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses[J]. Proceedings of SPIE, 2011, 8080:80800D. doi: 10.1117/12.887408
    [32] BETT T H, BARNES A R, HOPPS N W, et al.. Development of static phase control elements for high-power solid state lasers[J]. Proceedings of SPIE, 2001, 4440:93-100. doi: 10.1117/12.448028
    [33] WILLIAMS W H. Simulations of a phase corrector plate for the National Ignition Facility[J]. Proceedings of SPIE, 1999, 3492:355-362. doi: 10.1117/12.354147
    [34] BETT T H, BARNES A R, HOPPS N W, et al.. Application of static phase control elements to high-power solid state lasers[J]. Proceedings of SPIE, 2001, 4270:177-191. doi: 10.1117/12.424672
    [35] LUMER Y, MOSHE I, JACKEL S, et al.. Use of phase corrector plates to increase the power of radially polarized oscillators[J]. Journal of the Optical Society of America B, 2010, 27(7):1337-1342. doi: 10.1364/JOSAB.27.001337
    [36] 张锐, 张小民, 粟敬钦, 等.用于惯性约束聚变驱动器的静态相位控制元件[J].中国激光, 2006, 33(3):311-315. doi: 10.3321/j.issn:0258-7025.2006.03.005

    ZHANG R, ZHANG X M, SU J Q, et al.. Static phase control elements for inertial confinement fusion drivers[J]. Chinese Journal of Lasers, 2006, 33(3):311-315.(in Chinese) doi: 10.3321/j.issn:0258-7025.2006.03.005
    [37] 李勇.重复频率受激布里渊散射光束波前畸变补偿的研究[D].哈尔滨: 哈尔滨工业大学, 2008: 7-22. http://cdmd.cnki.com.cn/Article/CDMD-10213-2009290704.htm

    LI Y. Investigation on compensate phase aberration of repetition laser by SBS-PCM[D]. Harbin: Harbin Institute of Technology, 2008: 7-22.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10213-2009290704.htm
    [38] 宁永刚, 聂劲松.布里渊增强四波混频技术及其应用[J].光电技术应用, 2005, 20(1):17-19, 23. doi: 10.3969/j.issn.1673-1255.2005.01.005

    NING Y G, NIE J S. Study and application of BEFWM technology[J]. Electro-Optic Technology Application, 2005, 20(1):17-19, 23.(in Chinese) doi: 10.3969/j.issn.1673-1255.2005.01.005
    [39] 王昊成, 樊仲维, 余锦, 等.带SBS相位共轭镜的高重复频率高功率激光系统研究进展[J].激光与光电子学进展, 2014, 51(4):040001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201404001

    WANG H CH, FAN ZH W, YU J, et al.. Research progress of high repetition rate and high power laser with SBS-phase conjugate mirror[J]. Laser & Optoelectronics Progress, 2014, 51(4):040001.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201404001
    [40] YASUHARA R, KAWASHIMA T, SEKINE T, et al.. 213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror[J]. Optics Letters, 2008, 33(15):1711-1713. doi: 10.1364/OL.33.001711
    [41] 许平.基于SBS的辐射板条固体激光输出研究[D].哈尔滨: 哈尔滨工业大学, 2013: 25-50. http://cdmd.cnki.com.cn/Article/CDMD-10213-1014002946.htm

    XU P. Research on output of radial slabs solid-state laser based on SBS[D]. Harbin: Harbin Institute of Technology, 2013, 25-50.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10213-1014002946.htm
    [42] KOVALEV V I, HARRISON R G, SCOTT A M. 300 W quasi-continuous-wave diffraction-limited output from a diode-pumped Nd:YAG master oscillator power amplifier with fiber phase-conjugate stimulated Brillouin scattering mirror[J]. Optics Letters, 2005, 30(24):3386-3388. doi: 10.1364/OL.30.003386
    [43] 赵智刚, 崔玲玲, 童立新, 等.带固体相位共轭镜的全固态脉冲抽运高重复频率大能量单纵模MOPA激光器[J].中国激光, 2010, 37(12):2949-2953. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201012001

    ZHAO ZH G, CUI L L, TONG L X, et al.. All-solid-state high pulse repetition rate high pulse energy single-longitudinal-mode MOPA laser system with solid-state phase conjugating mirror[J]. Chinese Journal of Lasers, 2010, 37(12):2949-2953.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201012001
    [44] 葛传文, 肖爽.高平均功率光纤受激布里渊散射相位共轭镜的研究与探讨[J].激光与光电子学进展, 2015, 52(6):070002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201507002

    GE CH W, XIAO SH. Investigation and discussion on high average-power fiber stimulated brillouin scattering phase-conjugation mirror[J]. Laser & Optoelectronics Progress, 2015, 52(6):070002.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201507002
    [45] 晏虎, 雷翔, 刘文劲, 等.37单元双压电片变形镜板条激光光束净化[J].强激光与粒子束, 2012, 24(7):1663-1666. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201207034

    YAN H, LEI X, LIU W J, et al.. Beam cleanup of slab laser with 37-element bimorph deformable mirror[J]. High Power Laser and Particle Beams, 2012, 24(7):1663-1666.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201207034
    [46] ZENDZIAN W, JABCZYNSKI J K, KASKOW M, et al.. Diode side pumped Nd:YAG slab laser with self-adaptive resonator[J]. Proceedings of SPIE, 2012, 8702:870208. https://www.researchgate.net/publication/258814333_Diode_side_pumped_NdYAG_slab_laser_with_self-adaptive_resonator
    [47] ZENDZIAN W, KASKOW M, JABCZYNSKI J K. Diode-pumped, actively Q-switched Nd:YAG laser with self-adaptive, reciprocal, closed-loop resonator[J]. Optics Express, 2014, 22(25):30657-30662. doi: 10.1364/OE.22.030657
    [48] KASKOW M, GALECKI L, ZENDZIAN W, et al.. Side-pumped neodymium laser with self-adaptive, nonreciprocal cavity[J]. Opto-Electronics Review, 2016, 24(1):10-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=oere-2016-0005
    [49] 孙哲, 李强, 程秋桐, 等.高效率连续半导体抽运开环互易式全息光栅Nd:YVO4板条激光器[J].中国激光, 2014, 41(7):0702003. http://www.cnki.com.cn/Article/CJFDTotal-JJZZ201407004.htm

    SUN ZH, LI Q, CHENG Q T, et al.. Efficient continuous diode-pumped Nd:YVO4 slab laser with an opened-loop reciprocal dynamic holographic cavity[J]. Chinese Journal of Lasers, 2014, 41(7):0702003.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JJZZ201407004.htm
    [50] 宋阳.基于SPGD的无波前探测自适应光学技术研究[D].长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015: 9-15. http://www.irgrid.ac.cn/handle/1471x/1004814

    SONG Y. Study on non-wavefront sensor adaptive optics technology based on stochastic parallel gradient descent algorithm[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015: 9-15.(in Chinese) http://www.irgrid.ac.cn/handle/1471x/1004814
    [51] REDMOND S, MCNAUGHT S, ZAMEL J, et al.. 15 kW near-diffraction-limited single-frequency Nd: YAG laser[C]. Proceedings of 2007 Conference on Lasers and Electro-Optics, IEEE, 2007.
    [52] LUBEIGT W, VALENTINE G, BURNS D. Enhancement of laser performance using an intracavity deformable membrane mirror[J]. Optics Express, 2008, 16(15):10943-10955. doi: 10.1364/OE.16.010943
    [53] MCNAUGHT S J, ASMAN C P, INJEYAN H, et al.. 100-kW coherently combined Nd: YAG MOPA laser array[C]. Proceedings of Frontiers in Optics 2009, Optical Society of America, 2009.
    [54] YANG P, XU B, LEI X, et al.. Correction of static and thermal aberrations of a zigzag slab amplifier employing a wave-front sensor-less adaptive optics system[J]. Chinese Optics Letters, 2012, 10(S24):S21409.
    [55] 向汝建, 何忠武, 徐宏来, 等.固体板条MOPA激光光束质量主动控制[J].强激光与粒子束, 2013, 25(2):358-362. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201302019

    XIANG R J, HE ZH W, XU H L, et al.. Closed-loop beam quality control for MOPA solid slab laser[J]. High Power Laser and Particle Beams, 2013, 25(2):358-362.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201302019
    [56] YANG P, WANG SH, DONG L ZH, et al.. Adaptive beam cleanup of a 1.3 kW pulsed slab amplifier[C]. Proceedings of CLEO: Science and Innovations 2014, Optical Society of America, 2014.
    [57] 于信.板条激光低阶像差自动校正技术研究[D].成都: 电子科技大学, 2018: 1-14. http://cdmd.cnki.com.cn/Article/CDMD-10614-1018975098.htm

    YU X. Research on automatic low-order aberration correction of slab laser[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 1-14.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10614-1018975098.htm
    [58] 胡诗杰.全光路像差校正自适应光学技术和双变形镜自适应光学技术研究[D].成都: 电子科技大学, 2009: 1-14. http://cdmd.cnki.com.cn/article/cdmd-10614-2010234383.htm

    HU SH J. The study of technology of the adaptive optics for all path aberration correction and double deformable mirrors adaptive optics[D]. Chengdu: University of Electronic Science and Technology of China, 2009: 1-14.(in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10614-2010234383.htm
    [59] 顾殿雨.反射式光束整形系统的低阶像差校正方法研究[D].长沙: 国防科学技术大学, 2013: 1-8. http://cdmd.cnki.com.cn/Article/CDMD-90002-1015958294.htm

    GU D Y. Study on compensation of low order aberrations based on beam shaping system[D]. Changsha: National University of Defense Technology, 2013: 1-8.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-90002-1015958294.htm
    [60] 傅筱莹.板条固体激光器光束整形扩束系统设计研究[D].成都: 中国科学院研究生院(光电技术研究所), 2015: 1-14. http://cdmd.cnki.com.cn/Article/CDMD-80151-1015951616.htm

    FU X Y. Research on beam shaping system design of slab lasers[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2015: 1-14.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80151-1015951616.htm
    [61] 郭建增, 刘铁根, 王振华, 等.基于整形光路的低阶像差校正方法[J].强激光与粒子束, 2012, 24(8):1797-1800. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201208008

    GUO J Z, LIU T G, WANG ZH H, et al.. Method for lower order aberration correction based on beam shaping[J]. High Power Laser and Particle Beams, 2012, 24(8):1797-1800.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201208008
    [62] GOODNO G D, PALESE S, HARKENRIDER J, et al.. High average-power Yb: YAG end-pumped zig-zag slab laser[C]. Proceedings of Advanced Solid State Lasers 2001, Optical Society of America, 2001.
    [63] GOODNO G D, KOMINE H, MCNAUGHT S J, et al.. Coherent combination of high-power, zigzag slab lasers[J]. Optics Letters, 2006, 31(9):1247-1249. doi: 10.1364/OL.31.001247
    [64] LI D J, MA ZH, HAAS R, et al.. Diode-pumped efficient slab laser with two Nd:YLF crystals and second-harmonic generation by slab LBO[J]. Optics Letters, 2007, 32(10):1272-1274. doi: 10.1364/OL.32.001272
    [65] LI D J, MA ZH, HAAS R, et al.. Diode-end-pumped double Nd:YLF slab laser with high energy, short pulse width, and diffraction-limited quality[J]. Optics Letters, 2008, 33(15):1708-1710. doi: 10.1364/OL.33.001708
    [66] LIU W G, ZHOU Q, FENG F, et al.. Active compensation of low-order aberrations with reflective beam shaper[J]. Optical Engineering, 2014, 53(9):096103. doi: 10.1117/1.OE.53.9.096103
    [67] FLECK J A J R, LAYNE C. Study of self-focusing damage in a high-power Nd:glass-rod amplifier[J]. Applied Physics Letters, 1973, 22(9):467-469. doi: 10.1063/1.1654715
    [68] XUE ZH W, GUO Y D, CHEN ZH ZH, et al.. Actively compensation of low order aberrations by refractive shaping system for high power slab lasers[J]. Optics & Laser Technology, 2015, 75:71-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a61b966b8e1694bf4fb16a8fe17d2eb8
    [69] YU X, DONG L ZH, LAI B H, et al.. Automatic low-order aberration correction based on geometrical optics for slab lasers[J]. Applied Optics, 2017, 56(6):1730-1739. doi: 10.1364/AO.56.001730
    [70] YU X, DONG L ZH, LAI B H, et al.. Automatic low-order aberrations compensator for a conduction-cooled end-pumped solid-state zigzag slab laser[J]. Optics Communications, 2017, 402:483-488. doi: 10.1016/j.optcom.2017.06.048
    [71] GRÉDIAC M. Method for surface reconstruction from slope or curvature measurements of rectangular areas[J]. Applied Optics, 1997, 36(20):4823-4829. doi: 10.1364/AO.36.004823
    [72] DAI G M, MAHAJAN V N. Orthonormal polynomials in wavefront analysis:error analysis[J]. Applied Optics, 2008, 47(19):3433-3445. doi: 10.1364/AO.47.003433
    [73] SUN W Q, CHEN L, TUYA W, et al.. Analysis of the impacts of horizontal translation and scaling on wavefront approximation coefficients with rectangular pupils for Chebyshev and Legendre polynomials[J]. Journal of the Optical Society of America A, 2013, 30(12):2539-2546. doi: 10.1364/JOSAA.30.002539
    [74] LAI B H, DONG L ZH, CHEN SH Q, et al.. Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system[J]. Chinese Optics Letters, 2016, 14(9):091402. doi: 10.3788/COL201614.091402
    [75] YU X, DONG L ZH, LAI B H, et al.. Adaptive aberration correction of a 5 J/6.6 ns/200 Hz Solid-state Nd:YAG laser[J]. Optics Letters, 2017, 42(14):2730-2733. doi: 10.1364/OL.42.002730
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1678
  • HTML全文浏览量:  496
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-04-11
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回