留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横向收集结构锗硅半导体雪崩探测器的设计研究

叶余杰 柯少颖 吴金镛 李成 陈松岩

叶余杰, 柯少颖, 吴金镛, 李成, 陈松岩. 横向收集结构锗硅半导体雪崩探测器的设计研究[J]. 中国光学, 2019, 12(4): 833-842. doi: 10.3788/CO.20191204.0833
引用本文: 叶余杰, 柯少颖, 吴金镛, 李成, 陈松岩. 横向收集结构锗硅半导体雪崩探测器的设计研究[J]. 中国光学, 2019, 12(4): 833-842. doi: 10.3788/CO.20191204.0833
YE Yu-jie, KE Shao-ying, WU Jin-Yong, LI Cheng, CHEN Song-yan. Design and research of Ge/Si avalanche photodiode with a specific lateral carrier collection structure[J]. Chinese Optics, 2019, 12(4): 833-842. doi: 10.3788/CO.20191204.0833
Citation: YE Yu-jie, KE Shao-ying, WU Jin-Yong, LI Cheng, CHEN Song-yan. Design and research of Ge/Si avalanche photodiode with a specific lateral carrier collection structure[J]. Chinese Optics, 2019, 12(4): 833-842. doi: 10.3788/CO.20191204.0833

横向收集结构锗硅半导体雪崩探测器的设计研究

doi: 10.3788/CO.20191204.0833
基金项目: 

国家自然科学基金 61534005

详细信息
    作者简介:

    叶余杰(1994-), 男, 安徽宣城人, 硕士研究生, 2012年于厦门大学获得学士学位, 现为厦门大学物理科学与技术学院硕士研究生, 主要从事半导体雪崩探测器的设计研究。E-mail:594049853@qq.com

    陈松岩(1966-), 男, 黑龙江黑河人, 博士, 教授, 博士生导师, 主要从事半导体光电器件、锂离子电池、光通信等方面的研究。E-mail:sychen@xmu.edu.cn

  • 中图分类号: TN362;TN215

Design and research of Ge/Si avalanche photodiode with a specific lateral carrier collection structure

Funds: 

National Natural Science Foundation of China 61534005

More Information
  • 摘要: 为了实现高效的微光探测以及满足量子通信的需求,需要研发制备具有高增益、低噪声和高带宽的高性能红外探测器,基于硅衬底材料的锗硅雪崩探测器(Avalanche Photodiode, APD)被认为是有希望实现近红外通信波段高效弱光探测的探测器件。本工作设计研究了一种横向收集结构的锗硅APD,并对其结构参数对电场分布的影响进行了仿真模拟。发现该结构中硅倍增层的掺杂浓度、尺寸等对器件电场分布具有很重要的影响,并且利用能带理论对其进行了解释说明。倍增层掺杂浓度提高后,增强的结效应导致该器件中出现了有趣的双结结构,横向的n+-n-结与纵向的p+-i-p--n-结共同作用于电场分布,并且实现了纵向雪崩与横向载流子收集。在-30 dBm 1 310 nm光源正入射下,新设计的横向吸收结构APD经过优化带宽可以达到20 GHz;线性响应度0.7 A/W;由于采用了键合方法,其暗电流可以下降至10-12 A。基本满足近红外通信波段弱光探测的高速、低暗电流、探测能力强等要求。
  • 图  1  (a) 横向吸收结构与(b)传统纵向SACM结构Ge/Si APD的结构示意图

    Figure  1.  Schematic diagrams of the (a)lateral-collection Ge/Si APD and (b)traditional vertical SACM Ge/Si APD

    图  2  30 V反向偏压下Ge/Si APD的电场分布图(线性坐标)。(a)最早设计的APD结构,其具有0.5 μm的Si层厚度,掺杂浓度为5×1015 cm-3。(b)在高掺Si层和台面间添加了1 μm Gap后的器件结构。(c)对应的I-V曲线

    Figure  2.  Electric fields of Ge/Si APDs at 30 V reverse bias in linear coordinates. (a)The original APD with 0.5 μm top Si layer(doping concentration of 5×1015 cm-3), (b)the optimized APD with a gap of 1 μm between the mesa and n+-Si layer, (c)I-V curves

    图  3  30 V反向偏压下不同Si倍增层掺杂浓度的Ge/Si APD的电场分布图(线性坐标)。(a)1×1016 cm-3; (b)5×1016 cm-3; (c)1×1017 cm-3; (d)5×1017 cm-3

    Figure  3.  Electric fields (linear coordinate) of Ge/Si APDs with the doping concentrations of (a)1×1016 cm-3, (b)5×1016 cm-3, (c)1×1017 cm-3, and (d)5×1017 cm-3 at 30 V reverse bias

    图  4  (a) I-V曲线; (b)0 V偏压下的器件能带模拟图; (c)30 V偏压下的器件能带模拟图

    Figure  4.  (a)I-V curves, (b)energy band diagrams of devices at 0 V bias, and (c)at 30 V bias with different doping concentration of top Si layer

    图  5  不同厚度Si层电场分布示意图及其I-V曲线。(a)300 nm;(b)1 μm;(c)1.5 μm(d)I-V曲线

    Figure  5.  Electric fields(linear coordinate) of Ge/Si APDs with (a)300 nm, (b)1 μm, and (c)1.5 μm thick top Si layer and (d)corresponding I-V curves

    图  6  不同宽度gap区电场分布示意图(对数坐标)。(a)0 μm;(b)1 μm;(c)2 μm;(d)5 μm

    Figure  6.  Electric fields(logarithmic coordinates) of Ge/Si APDs with (a)0 μm, (b)1 μm, (c)2 μm, and (d)5 μm wide gap region

    图  7  不同宽度gap区的(a)横向电场分布和(b)对应的3 dB带宽

    Figure  7.  Lateral electric fields(a) and the related 3 dB-BW(b) of the APDs with different width of gaps

    图  8  纵向SACM结构APD的(a)电子速率;(b)电流方向(和电子输运方向相反)和(c)纵向电子速率分布;本文设计的横向吸收结构APD的(d)电子速率;(e)电流方向(和电子输运方向相反)和(f)纵向电子速率分布,插图中是横向速率分布

    Figure  8.  (a)-(c) The electron velocity(linear coordinates), direction of current flow(contrary to electrons transport) and vertical electron velocity curve in edge of SACM APD; (d)-(f)the electron velocity, direction of current flow and vertical electron velocity curve of proposed APD. Inset shows the lateral electron velocity

    图  9  不同Ge吸收层厚度(0.5 μm,0.6 μm,0.7 μm)模拟得到的(a)I-V曲线、增益和(b)3dB带宽

    Figure  9.  (a)I-V curves, gain and (b)3 dB-BW of devices with different Ge absorption layer thicknesses(0.5 μm, 0.6 μm, 0.7 μm) under an optical input power of -30 dBm at 1 310 nm

    表  1  不同结构Ge/Si APD的性能对比

    Table  1.   Performance comparison obtained by Ge/Si APD with different structures

    器件 雪崩电压/V 暗电流/A 响应度/(A·W-1) 3 dB带宽/GHz
    0.5 μm吸收层 横向 -21.85 10-12 0.622 20.4
    纵向 在雪崩倍增前提前击穿,不能工作
    0.6 μm吸收层 横向 -23.65 10-12 0.701 19.6
    纵向 -29.1 10-8 1.05 16.6
    0.7 μm吸收层 横向 -25.55 10-12 0.774 17.6
    纵向 -30.1 10-8 1.2 13.3
    纵向APD[20] -24 10-7 0.55 13
    纵向APD[21] -22 10-9 0.85 13
    下载: 导出CSV
  • [1] GUO Q S, POSPISCHIL A, BHUIYAN M, et al.. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Letters, 2016, 16(7):4648-4655. doi: 10.1021/acs.nanolett.6b01977
    [2] MIAO J SH, HU W D, GUO N, et al.. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2015, 11(8):936-942. doi: 10.1002/smll.201402312
    [3] 逯丹凤, 刘瑞鹏, 祁志美.基于多层膜敏感圆片的光学式有机磷快速检测方法[J].分析化学, 2011, 39(6):934-938. http://d.old.wanfangdata.com.cn/Periodical/fxhx201106031

    LU D F, LIU R P, QI ZH M. An optical method for rapid detection of organophosphates based on multilayer-disc sensing element[J]. Chinese Journal of Analytical Chemistry, 2011, 39(6):934-938.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201106031
    [4] 张维冰, 王智聪, 张凌怡.超高效液相色谱-光电二极管阵列检测-串联四级杆质谱法测定红洋葱中黄酮醇及其糖苷类化合物[J].分析化学, 2014, 42(3):415-422. http://d.old.wanfangdata.com.cn/Periodical/fxhx201403018

    ZHANG W B, WANG ZH C, ZHANG L Y. Determination of flavonols and flavonol glycosides in red onion by ultra high performance liquid chromatography-photodiode array detection-tandem quadrupole mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(3):415-422.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201403018
    [5] MARTINEZ N J D, GEHL M, DEROSE C T, et al.. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode[J]. Optics Express, 2017, 25(14):16130-16139. doi: 10.1364/OE.25.016130
    [6] WOODSON M E, REN M, MADDOX S J, et al.. Low-noise AlInAsSb avalanche photodiode[J]. Applied Physics Letters, 2016, 108(8):081102. doi: 10.1063/1.4942372
    [7] WEN J, WANG W J, CHEN X R, et al.. Origin of large dark current increase in InGaAs/InP avalanche photodiode[J]. Journal of Applied Physics, 2018, 123(16):161530. doi: 10.1063/1.4999646
    [8] TU J J, ZHAO Y L, WEN K, et al.. The determination of unity gain for InGaAs/InP avalanche photodiodes with excess noise measurements[J]. IEEE Photonics Technology Letters, 2017, 29(8):671-674. doi: 10.1109/LPT.2017.2676028
    [9] HE D Y, WANG SH, CHEN W, et al.. Sine-wave gating InGaAs/InP single photon detector with ultralow after pulse[J]. Applied Physics Letters, 2017, 110(11):111104. doi: 10.1063/1.4978599
    [10] MA Y J, ZHANG Y G, GU Y, et al.. Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors[J]. Optics Express, 2016, 24(7):7823-7834. doi: 10.1364/OE.24.007823
    [11] YIN D D, YANG X H, HE T T, et al.. InGaAs/InAlAs avalanche photodetectors integrated on silicon-on-insulator waveguide circuits[J]. Journal of Optical Technology, 2017, 84(5):350-354. doi: 10.1364/JOT.84.000350
    [12] CHEN H T, VERBIST J, VERHEYEN P, et al.. High sensitivity 10 Gb/s Si photonic receiver based on a low-voltage waveguide-coupled Ge avalanche photodetector[J]. Optics Express, 2015, 23(2):815-822. doi: 10.1364/OE.23.000815
    [13] VIROT L, CROZAT P, FÉDÉLI J M, et al..Germanium avalanche receiver for low power interconnects[J]. Nature Communications, 2014, 5:4957. doi: 10.1038/ncomms5957
    [14] MICHELJ, LIU J F, KIMERLING L C. High-performance Ge-on-Si photodetectors[J]. Nature Photonics, 2010, 4(8):527-534. doi: 10.1038/nphoton.2010.157
    [15] SAMAVEDAM S B, CURRIE M T, LANGDO T A, et al.. High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers[J]. Applied Physics Letters, 1998, 73(15):2125-2127. doi: 10.1063/1.122399
    [16] KE SH Y, YE Y J, LIN SH M, et al.. Low-temperature oxide-free silicon and germanium wafer bonding based on a sputtered amorphous Ge[J]. Applied Physics Letters, 2018, 112(4):041601. doi: 10.1063/1.4996800
    [17] KE SH Y, YE Y J, WU J Y, et al..Interface characteristics and electrical transport of Ge/Si heterojunction fabricated by low-temperature wafer bonding[J]. Journal of Physics D:Applied Physics, 2018, 51(26):265306. doi: 10.1088/1361-6463/aac7b0
    [18] KE SH Y, LIN SH M, YE Y J, et al..Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Gelayer[J]. Journal of Physics D:Applied Physics, 2017, 50(40):405305. doi: 10.1088/1361-6463/aa81ee
    [19] DUAN N, LIOW T Y, LIM E J, et al.. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection[J]. Optics Express, 2012, 20(10):11031-11036. doi: 10.1364/OE.20.011031
    [20] ZAOUI W S, CHEN H W, BOWERS J E, et al..Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product[J]. Optics Express, 2009, 17(15):12641-12649. doi: 10.1364/OE.17.012641
    [21] KANG Y M, LIU H D, MORSE M, et al..Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J]. Nature Photonics, 2009, 3(1):59-63. doi: 10.1038/nphoton.2008.247
    [22] SELBERHERR S. Analysis and Simulation of Semiconductor Devices[M]. Vienna:Springer, 1984.
    [23] HUANG SH H, LI CH, ZHOU ZH W, et al.. Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template[J]. Thin Solid Films, 2012, 520(6):2307-2310. doi: 10.1016/j.tsf.2011.09.023
    [24] ZHOU ZH W, HE J K, WANG R CH, et al.. Normal incidence p-i-n Geheterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition[J]. Optics Communications, 2010, 283(18):3404-3407. doi: 10.1016/j.optcom.2010.04.098
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  647
  • HTML全文浏览量:  156
  • PDF下载量:  1067
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-03-06
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回