留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿材料在激光领域的研究进展

王兰 董渊 高嵩 陈奎一 房法成 金光勇

王兰, 董渊, 高嵩, 陈奎一, 房法成, 金光勇. 钙钛矿材料在激光领域的研究进展[J]. 中国光学(中英文), 2019, 12(5): 993-1014. doi: 10.3788/CO.20191205.0993
引用本文: 王兰, 董渊, 高嵩, 陈奎一, 房法成, 金光勇. 钙钛矿材料在激光领域的研究进展[J]. 中国光学(中英文), 2019, 12(5): 993-1014. doi: 10.3788/CO.20191205.0993
WANG Lan, DONG Yuan, GAO Song, CHEN Kui-yi, FANG Fa-cheng, JIN Guang-yong. Research progress of perovskite materials in the field of lasers[J]. Chinese Optics, 2019, 12(5): 993-1014. doi: 10.3788/CO.20191205.0993
Citation: WANG Lan, DONG Yuan, GAO Song, CHEN Kui-yi, FANG Fa-cheng, JIN Guang-yong. Research progress of perovskite materials in the field of lasers[J]. Chinese Optics, 2019, 12(5): 993-1014. doi: 10.3788/CO.20191205.0993

钙钛矿材料在激光领域的研究进展

doi: 10.3788/CO.20191205.0993
详细信息
    作者简介:

    王兰(1984—),女,吉林省长春人,博士研究生,工程师,2011年于长春理工大学获得硕士学位,现就读于长春理工大学,主要从事激光物理与新型固体激光器的研究;任职于吉林省计量科学研究院,吉林省计量测试仪器与技术重点实验室,主要从事计量校准、检定工作。E-mail:86830639@qq.com

    金光勇(1971—),男,吉林长春人,研究员,博士生导师,2003年于长春理工大学获得工学博士学位,主要从事激光及其物质相互作用、激光物理与新型固体激光器的研究。E-mail:jgycust@163.com

  • 中图分类号: O439

Research progress of perovskite materials in the field of lasers

More Information
  • 摘要: 钙钛矿材料具有发光量子产率高、自由载流子、结晶结构完美等优点,首先被提出应用于太阳能电池领域,并在近几年得到快速发展,研究也逐渐向电致发光、激光等领域拓展。本文介绍了钙钛矿材料在激光领域的研究进展,着重从4个部分进行叙述:可调节波长范围宽的钙钛矿激光器、稳定性更好的钙钛矿激光器、具有紫外光以及新波长激光输出潜力的钙钛矿激光器、具有非线性光学特性的钙钛矿激光器。列举了多种钙钛矿材料的制备方法及其光学特性;总结了现有钙钛矿激光器的结构特点以及输出模式;剖析了钙钛矿材料在激光领域广泛应用存在的问题,同时对钙钛矿激光器的发展前景进行了分析。为钙钛矿材料在激光领域的进一步研究提供参考。

     

  • 图 1  混合卤化铅钙钛矿单晶纳米线激光器在室温下可广泛调节的激光发射波长[9]

    Figure 1.  Widely tunable lasing emission wavelength at room temperature from single-crystal NW lasers of mixed lead halide perovskites [9]

    图 2  CH3NH3PbI3 NW激光器的发射极化性[9]

    Figure 2.  Emission polarization of the CH3NH3PbI3 NW laser[9]

    图 3  NW在激光阈值上下的发射光谱,插图是低于和高于激光阈值时NW的光学图像[10]

    Figure 3.  Emission spectra of a NW below and above lasing threshold. The insets are optical images of the NW below and above lasing threshold[10]

    图 4  单晶钙钛矿纳米线产生的可调节波长激光:(a)(FA0.67MA0.33)Pb(BrI0.31)混合生长NWs的SEM成像;(b)(FA, MA)Pb(Br, I)3 NW的EDS映射,显示了Pb、I、Br元素的分布均匀;(c)1H NMR谱证实了(FA, MA)Pb(Br, I)3中MA和FA的混合组份;(d)由442 nm激光激发的一系列(FAxMA1-x)Pb(Br3-yIy)NWs的光学图像,沿NW轴显示出彩色发射和强波导效应;(e)单晶铅钙钛矿NWs的宽波长范围可调节激光输出,矩形框突出了阳离子混合化(MA, FA) PbI3实现的新的发射波长范围;NWs或(FA, MA)Pb(Br, I)3中的阳离子和阴离子合金化;这在镁基钙钛矿合金中是无法实现的[10]

    Figure 4.  Tunable wavelength laser produced by single crystal perovskite nanowires:(a)SEM image of as-grown NWs of double alloys using(FA0.67MA0.33)Pb(BrI0.31); (b)EDS mapping of a (FA, MA)Pb(Br, I)3 NW, showing the uniform elemental distribution of Pb, I, and Br; (c)1H NMR spectrum confirms the alloying of MA and FA in (FA, MA)Pb(Br, I)3; (d)optical images of a series of (FAxMA1-x)Pb(Br3-yIy) NWs, showing colorful emission and strong waveguiding effect along the NW axis; (e)broad wavelength-tunable lasing from single-crystal lead perovskite NWs. The rectangular boxes highlight the new wavelength range of emissions achieved by cation alloying (MA, FA)PbI3 NWs or both cation and anion alloying in (FA, MA)Pb(Br, I)3 NWs, which could not be realized in MA-based perovskite alloys[10]

    图 5  CsSnBrxI3-x钙钛矿的(a)稳定性测试和(b)可调节近红外光谱[12]

    Figure 5.  About CsSnBrxI3-x Perovskite (a)stability testing and (b)tunable near-infrared spectroscopy[12]

    图 6  2×3阵列CsPbCl3 MD的SEM图像以及钙钛矿微盘阵列获取的可调节激光光谱[13]

    Figure 6.  SEM image of CsPbCl3MD with 2×3 array structure and tunable laser spectroscopy acquired from perovskite microdisk array[13]

    图 7  402 nm、150 fs、250 kHz脉冲连续泵浦条件下,钙钛矿纳米线进行的光稳定性试验[10]

    Figure 7.  Photostability test by continuously pumping the perovskite nanowire with 402 nm, 150 fs, and 250 kHz pulse[10]

    图 8  单晶CsPbBr3纳米线中的激光。(a)CsPbBr3纳米线的暗场图像;(b-d)在有限元和飞秒脉冲激光激励下,随着激励强度的增大纳米线变化情况;(e)图(a)~(d)中CsPbBr3的功率与发射光谱图,窄的发射峰是530 nm激光[14]

    Figure 8.  Lasing in single-crystal CsPbBr3 nanowires. (a)Dark-field image of a CsPbBr3 nanowire; (b-d)the nanowire from (a) under excitation from a femtosecond pulsed laser with increasing excitation fluence; (e)power-dependent emission spectra from the CsPbBr3 nanowire shown in images (a)-(d), narrow emission peaks at 530 nm are indicative of lasing[14]

    图 9  具有不同卤离子的钙钛矿纳米片:(a)纳米片图像和可调节输出激光光谱;(b)CsPbBraI3-a放大的激光模式谱线[16]

    Figure 9.  Perovskite nanoplatelet with different halide ions: (a)images of nanoplatelet and tunable spectra of output laser; (b)zoom-in spectrum of a lasing mode of CsPbBraI3-a[16]

    图 10  (a) 激光器结构;(b)最低激光阈值的测量,在阈值能量密度为6 μJ/cm2时斜率变化明显;(c)特定光栅阵列的TE和TM模的激光发射波长与光栅周期之比;(d) (15~30) μJ/cm2之间4种泵浦功率下295 nm光栅的发射光谱[18]

    Figure 10.  (a)The structure of the laser; (b)the measurement for the lowest laser threshold, showing a marked change in slope at the threshold energy density of 6 μJ/cm2; (c)the ratio of lasing emission wavelength vs grating period for the TE and TM modes of a particular grating array; (d)the emission spectra of a 295 nm grating for 4 different pump powers between 15 and 30 μJ/cm2[18]

    图 11  单个CsPbBr3微球的单模激光输出(a)单个CsPbBr3微球示意图,在400 nm,40 fs,10 kHz泵浦激光激励下硅衬底上的质谱。绿色圆圈表示光在球形回音壁式谐振腔内的传播;(b)CsPbBr3微球的相关激光发射光谱[19]

    Figure 11.  Single-mode lasing from an individual CsPbBr3 MS. (a)Schematic of an individual CsPbBr3 MS on silicon substrate pumped by a 400 nm laser excitation(~40 fs, 10 kHz). The green circle indicates the light propagation inside the spherical WGM cavity. (b)Excitation power-dependent lasing spectra from one single CsPbBr3 MS[19]

    图 12  稳定性强,全彩色激光(a)保存1年后单个CsPbBr3纳米线激光光谱的荧光依赖性。(b)阈值为1.47 nW的单模激光强度与功率的关系。(c)CsPbX3纳米线激光器的波长可调谐范围。(d)激光的CIE坐标(蓝光、绿光和红光)(实心星)和NTSC颜色标准(实心圆),激光对应的CIE坐标分别为(0.17, 0.01)、(0.10, 0.78)和(0.71, 0.28) [20]

    Figure 12.  Strong stability and full-color lasing. (a)The fluence-dependent of lasing spectra from a single CsPbBr3 NW after one year preservation. (b)The relationship between intensity and power of a single mode lasing with threshold of 1.47 nW. (c)Wavelength tunability of CsPbX3 NWs lasers. (d)CIE coordinates of lasing behavior(blue, green and red lasing) (solid stars) and the NTSC color standards(solid circles). The corresponding CIE coordinates of lasing are(0.17, 0.01), (0.10, 0.78), and (0.71, 0.28) for blue, green and red, respectively[20]

    图 13  具有代表性的MAPbI3薄片的激光特性。(a)400 nm、50 fs、1 kHz激光激发在MAPbI3薄片上的示意图;(b)在激光阈值附近记录的不同泵浦效率对发射光谱的影响;(c)泵浦效率对输出强度、发光峰半高宽的影响;(d)边缘长度为15 μm的钙钛矿薄片光谱图像[24]

    Figure 13.  Lasing characterizations of a representative MAPbI3 platelet. (a)Schematic of MAPbI3 platelet on silicon substrate pumped by 400 nm laser excitation with 50 fs, 1 kHz; (b)effect of emission spectra at different pump fluences recorded at around the lasing threshold on emission spectra; (c)the effect of pumping efficiency on integrated emission intensity and FWHM; (d)optical images of a representative perovskite platelet with edge length of 15 μm[24]

    图 14  激光光谱与六角形钙钛矿晶体腔边长变化关系[24]

    Figure 14.  Edge-length-dependent lasing behavior for different size of perovskite platelets[24]

    图 15  (a) 从响应性有机微盘耦合钙钛矿微丝发射可切换单模激光的设计原理;(b)耦合微观结构制造工艺示意图;(c-e)相应的耦合微结构制造过程的亮场光学显微镜图像;(f)在单一衬底上构建不同尺寸耦合微观结构的SEM图像;(g)典型耦合微观结构的SEM图像;(h)差距地区的放大图[26]

    Figure 15.  (a)Design principle of the switchable single-mode lasing emitted from a responsive organic microdisk coupled perovskite MW. (b)Schematic illustration of fabrication processes of a coupled microstructure. (c-e)Corresponding bright-field optical microscopy images in fabrication processes of a coupled microstructure. (f)SEM image of coupled microstructures with different sizes constructed on a single substrate. (g)SEM image of a typical coupled microstructure. (h)Magnified view of the gap region[26]

    图 16  (a) 343 nm激光激励(290 fs,6 kHz)泵浦云母衬底纳米片(NPL)示意图;(b)等边三角形MAPbI3NPL不同泵浦密度下的2D伪彩色图;(c)激光阈值附近的NPL发射光谱[27]

    Figure 16.  (a)Schematic of a nanoplatelets(NPL) on mica substrate pumped by 343 nm laser excitation(≈290 fs, 6 kHz); (b)2D pseudocolor plot of an equilateral triangular MAPbI3 NPL emission under different pump densities; (c)NPL emission spectra around the lasing threshold[27]

    图 17  双光子泵浦四面体微腔激光器(a)单一四面体的明亮光学图像;(b)和(c)分别显示PTh下方和上方的实彩色光学图像;(d)激光激发荧光相关发射光谱;(e)综合发射强度与激发通量的对数图;(f)主激光的高斯模式[28]

    Figure 17.  Two-photon pumped tetrahedral microcavity lasers. (a)Bright optical image of a single tetrahedron. (b) and (c)show real-color optical images below and above PTh, respectively. (d)Excitation fluence-dependent emission spectra. (e)Log-Log plot of the integrated emission intensity versus the excitation fluence. (f)Gaussian mode of dominant lasing[28]

    图 18  (a) ASE光稳定性;(b)易实现的宽波长可调节激光[4]

    Figure 18.  (a)ASE stability to light and (b)easily achievable tunable lasers with wide wavelength range[4]

    图 19  钙钛矿CsPbX3 NCs (X=Cl, Br, I)光学性能分析:(a)在波长为365 nm紫外灯照射下的甲苯胶体溶液;(b)除CsPbCl3样本发射的350 nm波长外CsPbX3可调节谱线;(c)典型的光学吸收和PL光谱;(d)CsPbCl3外其他样品的时间分辨PL衰变[34]

    Figure 19.  Optical properties analysis of perovskite CsPbX3 NCs (X=Cl, Br, I): (a)colloidal solutions in toluene under UV lamp with the wavelength of 365nm; (b)in addition to the 350 nm wavelength emitted by the CsPbCl3 sample, the remaining CsPbX3 tunable laser spectrum lines; (c)typical optical absorption and PL spectroscopy; (d)time-resolved PL decays for all other samples except CsPbCl3[34]

    图 20  (HOC2H4NH3)2CuCl4的紫外-可见光光谱图[35]

    Figure 20.  UV-Vis spectrum of (HOC2H4NH3)2CuCl4[35]

    图 21  钙钛矿回音壁腔发射激光演变过程[21]

    Figure 21.  The evolution process from spontaneous emission to lasing of perovskites whispering-gallery-mode nanocavitie[21]

    图 22  钙钛矿回音壁激光腔的模式图[21]

    Figure 22.  Laser output mode diagram of perovskites whispering-gallery-mode nanocavitie[21]

    图 23  激光输出光谱[37]。(a)MAPbI3纳米线从自发发射到激光输出演变;(b)晶体亮场图像及对应的PL图像;(c)不同温度下单个MAPbI3晶体光学特性;(d)MAPbI3、MAPbBr3和MAPbIxCl3-x激光谱线;(e)MAPbI3、MAPbBr3和MAPbIxCl3-x纳米线的光致发光衰减谱

    Figure 23.  Laser output spectra[37]. (a)The evolution from spontaneous emission to lasing in a typical MAPbI3 nanowire. (b)The bright-field image of a single MAPbI3 nanowire and the corresponding PL images. (c)Lasing behavior of single MAPbI3 nanowire at different temperatures. (d)Lasing spectra of MAPbI3, MAPbBr3 and MAPbIxCl3-x. (e)The photoluminescence decay profile of individual MAPbI3, MAPbBr3, and MAPbIxCl3-x nanowire

    图 24  (a) MAPbBr3的线性吸收微观结构;(b)超短脉冲在1 240 nm处的传输作为入射功率的函数;(c)三光子吸收示意图;(d)单光子和三光子激发下的PL谱[42]

    Figure 24.  (a)Linear absorption of the MAPbBr3 microstructures. (b)The transmission of an ultrashort pulse at 1 240 nm as a function of incident power. (c)Schematic diagram of the three-photon absorption. (d)The PL spectra under one-photon and three-photon excitations[42]

    表  1  钙钛矿激光器的性能比较

    Table  1.   Performances comparison of perovskite lasers

    年限 材料 形貌 微腔结构 泵浦源 发光波长 阈值 Q 输出模式 稳定性
    2010 (C5H4CH2NH3)2PbI4[8] 薄膜、2D 500~332 nm
    2014 MAPbI3-xXx[21] 纳米片
    (三角形、六边形)
    WGM 1 300 多模
    2015 MAPbX3 X=Br, Cl)[9] 纳米线 FP 402 nm、
    250 kHz、
    150 fs
    790~510 nm 220 nJ/cm2 3 600
    2015 (FA, MA)Pb(Br, I)3[10] 纳米线 FP 402 nm、
    250 kHz、
    150 fs
    490~824 nm several μJ/cm2 2 300
    2015 MAPbBr3 [22] 纳米片、
    3D
    400 nm、
    1 kHz、120 fs、
    37 μJ/cm2
    525~557 nm (3.6±0.5)
    μJ/cm2
    430 单模
    2016 MAPbI3[11] 薄膜、
    3D
    DFB 370~440 nm、
    1 kHz、
    1 ns
    770~793 nm 1 μJ/cm2
    2016 CsSnX3
    (X=Br, I)[12]
    600 nm、
    1 kHz、
    50 fs
    700~1 000 nm (8±2)
    μJ/cm2
    500 >20 h稳定
    2016 CsPbX3
    (X=Br, Cl)[14]
    纳米线 FP 500 nm、
    295 kHz、
    (150~200) fs
    425~545 nm 1 009±5 109个激发周期
    2016 CsPbX3
    (X=Cl,Br,I)[16]
    微片 WGM 50 nm、
    50 fs、1 kHz
    410~700 nm 2.0 μJ/cm2 输出模式可控
    2016 MAPbX3
    (X=Cl, Br, I)[24]
    纳米片
    (六边形)
    WGM 400 nm、
    1 kHz、
    50 fs
    11 μJ/cm2
    770~795 nm 11 μJ/cm2 1 210 多模转换单模
    2017 CsPbX3
    (X=Cl, Br) [13]
    微盘大面积阵列 WGM 360~380 nm、 425~540 nm 3 μJ/cm2 425
    2017 CsPbBr3[17] 纳米晶体量子点 DBR 400 nm、
    50 fs、
    1 kHz
    500~550 nm 0.39 μJcm/2 1.8×107个脉冲保持5小时
    2017 MAPbBr3[18] 薄膜、
    3D
    543~555 nm 6 μJ/cm2 模式可切换 连续运行数月
    2017 CsPbX3[19] 尺寸可调纳米球 WGM 400 nm、
    10 kHz、
    40 fs
    425~715 nm 0.42 μJ/cm2 6 100 单模
    2018 CsPbX3[20] 纳米线 40 0nm、
    1 kHz、
    35 fs
    420~650 nm 12.33 μJ/cm2 单模 一年性能不变
    2018 MAPbBr3[26] 纳米线组合纳米片 FP&WGM 375 nm/800 nm、
    1 kHz、
    150 fs
    540~570 nm 单模输出
    2019 MAPbI3[7] 纳米片
    (三角形)
    WGM 343 nm、
    6 kHz、
    290 fs
    775~782 nm 18.7 μJ/cm2 2600 单模
    2019 CsPbBr3[28] 微孔 四面体空间全内反射腔 470 m、1 kHz、
    80 fs
    538 nm 1 790
    下载: 导出CSV
  • [1] 王圣之.有机-无机杂化钙钛矿的合成与光学性能研究[D].南京: 东南大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10286-1016246732.htm

    WANG SH ZH. Synthesis and optical properties of organic-inorganic hybrid perovskite[D]. Nanjing: Southeast University, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10286-1016246732.htm
    [2] 陈聪.钙钛矿氧化物薄膜的电学及光学非线性特性研究[D].合肥: 中国科学技术大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10358-1011124938.htm

    CHEN C. Nonlinear electrical and optical properties of perovskite oxide films[D]. Hefei: University of Science and Technology of China, 2011.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10358-1011124938.htm
    [3] 张冰.有机卤化物CH3NH3PbX3材料光学性能研究[D].北京: 北京交通大学, 2017. http://xuewen.cnki.net/CMFD-1017086533.nh.html

    ZHANG B. Study on the optical properties of organic halide CH3NH3PbX3materials[D]. Beijing: Beijing Jiaotong University, 2017.(in Chinese) http://xuewen.cnki.net/CMFD-1017086533.nh.html
    [4] XING G CH, MATHEWS N, LIM S S, et al.. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13(5):476-480. doi: 10.1038/nmat3911
    [5] SUTHERLAND B R, HOOGLAND S, ADACHI M M, et al.. Conformal organohalide perovskites enable lasing on spherical resonators[J]. ACS Nano, 2014, 8(10):10947-10952. doi: 10.1021/nn504856g
    [6] 邬承就, 王强民, 赵梅荣, 等.694 nm激光泵浦的Tm:YAG可调谐激光器[J].量子电子学报, 1998, 15(1):60-65. http://d.old.wanfangdata.com.cn/Periodical/zhyygrxzz200208010

    WU CH J, WANG Q M, ZHAO M R, et al.. Tm:YAG tunable lasers pumped by a 694 nm laser[J]. Chinese Journal of Quantum Electronics, 1998, 15(1):60-65.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zhyygrxzz200208010
    [7] 张瑞君.波长可调谐激光器开发现状及应用市场前景[J].中国电子商情:基础电子, 2008(7):52-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802254561

    ZHANG R J. Development status and application market prospects of wavelength tunable lasers[J]. China Electronic Market, 2008(7):52-55.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802254561
    [8] CHENG Z Y, LIN J. Layered organic-inorganic hybrid perovskites:structure, optical properties, film preparation, patterning and templating engineering[J]. CrystEngComm, 2010, 12(10):2646-2662. doi: 10.1039/c001929a
    [9] ZHU H M, FU Y P, MENG F, et al.. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6):636-642. doi: 10.1038/nmat4271
    [10] FU Y P, ZHU H M, SCHRADER A W, et al.. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability[J]. Nano Letters, 2016, 16(2):1000-1008. doi: 10.1021/acs.nanolett.5b04053
    [11] SALIBA M, WOOD S M, PATEL J B, et al.. Structured organic-inorganic perovskite toward a distributed feedback laser[J]. Advanced Materials, 2016, 28(5):923-929. doi: 10.1002/adma.201502608
    [12] XING G CH, KUMAR M H, CHONG W K, et al.. Solution-processed tin-based perovskite for near-infrared lasing[J]. Advanced Materials, 2016, 28(37):8191-8196. doi: 10.1002/adma.201601418
    [13] HE X X, LIU P, ZHANG H H, et al.. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite[J]. Advanced Materials, 2017, 29(12):1604510. doi: 10.1002/adma.201604510
    [14] EATON S W, LAI M L, GIBSON N A, et al.. Lasing in robust cesium lead halide perovskite nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8):1993-1998. doi: 10.1073/pnas.1600789113
    [15] YAKUNIN S, PROTESESCU L, KRIEG F, et al.. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6:8056. doi: 10.1038/ncomms9056
    [16] ZHANG Q, SU R, LIU X F, et al.. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J]. Advanced Functional Materials, 2016, 26(34):6238-6245. doi: 10.1002/adfm.201601690
    [17] HUANG CH Y, ZOU CH, MAO CH Y, et al.. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability[J]. ACS Photonics, 2017, 4(9):2281-2289. doi: 10.1021/acsphotonics.7b00520
    [18] HARWELL J R, WHITWORTH G L, TURNBULL G A, et al.. Green perovskite distributed feedback lasers[J]. Scientific Reports, 2017, 7(1):11727. doi: 10.1038/s41598-017-11569-3
    [19] TANG B, DONG H X, SUN L X, et al.. Single-mode lasers based on cesium lead halide perovskite submicron spheres[J]. ACS Nano, 2017, 11(11):10681-10688. doi: 10.1021/acsnano.7b04496
    [20] JIANG L, LIU R M, SU R L, et al.. Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield[J]. Nanoscale, 2018, 10(28):13565-13571. doi: 10.1039/C8NR03830A
    [21] ZHANG Q, HA S T, LIU X F, et al.. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 2014, 14(10):5995-6001. doi: 10.1021/nl503057g
    [22] LIAO Q, HU K, ZHANG H H, et al.. Perovskite microdisk microlasers self-assembled from solution[J]. Advanced Materials, 2015, 27(22):3405-3410. doi: 10.1002/adma.201500449
    [23] SCHMIDT L C, PERTEG S A, GONZ LEZ-CARRERO S, et al.. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(3):850-853. doi: 10.1021/ja4109209
    [24] LIU X F, NIU L, WU CH Y, et al.. Periodic Organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing[J]. Advanced Science, 2016, 3(11):1600137. doi: 10.1002/advs.201600137
    [25] WANG Y, LI X M, NALLA V, et al.. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals[J]. Advanced Functional Materials, 2017, 27(13):1605088. doi: 10.1002/adfm.201605088
    [26] ZHAO J Y, YAN Y L, WEI C, et al.. Switchable single-mode perovskite microlasers modulated by responsive organic microdisks[J]. Nano Letters, 2018, 18(2):1241-1245. doi: 10.1021/acs.nanolett.7b04834
    [27] LI G H, CHE T, JI X D, et al.. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite[J]. Advanced Functional Materials, 2019, 29(2):1805553. doi: 10.1002/adfm.201805553
    [28] WANG X X, CHEN H ZH, ZHOU H, et al.. Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers[J]. Nanoscale, 2019, 11(5):2393-2400. doi: 10.1039/C8NR09856E
    [29] YU Y, CHEE Y C, PENG XY, et al.. High power 355 nm diode-pumped solid-state laser[J]. Proceedings of SPIE, 2015, 9524:95241A.
    [30] AUBERT N, GEORGES T, CHAUZAT C, et al.. Low-cost 7 mW CW 355-nm diode-pumped intracavity frequency-tripled microchip laser[J]. Proceedings of SPIE, 2006, 6100:610008. doi: 10.1117/12.644165
    [31] LIU Q, YAN X P, GONG M L, et al.. High-power 266 nm ultraviolet generation in yttrium aluminum borate[J]. Optics Letters, 2011, 36(14):2653-2655. doi: 10.1364/OL.36.002653
    [32] NIKITIN D G, BYALKOVSKIY O A, VERSHININ O I, et al.. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal[C]. Proceedings of 2014 International Conference Laser Optics, IEEE, 2014.
    [33] YAN CH, WANG Y Y, XU D G, et al.. High-power high-efficiency picosecond 355nm ultraviolet laser based on La2CaB10O19 crystal[J]. Proceedings of SPIE, 2014, 9266:92661G. doi: 10.1117/12.2074323
    [34] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites(CsPbX3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6):3692-3696. doi: 10.1021/nl5048779
    [35] 杨志胜, 柯蔚芳, 王艳香, 等.杂化钙钛矿(HOC2H4NH3)2CuCl4的制备与表征[J].无机材料学报, 2017, 32(10):1063-1067. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjclxb201710009

    YANG ZH SH, KE W F, WANG Y X, et al.. Preparation and characterization of a novel hybrid Perovskite (HOC2H4NH3)2CuCl4[J]. Journal of Inorganic Materials, 2017, 32(10):1063-1067.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjclxb201710009
    [36] 高允贵.用于深紫外光源的非线性光学材料[J].光电子技术与信息, 1999, 12(1):23-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjsyxx199901004

    GAO Y G. Nonlinear optical materials for deep ultraviolet light sources[J]. Optoelectronic Technology & Information, 1999, 12(1):23-26.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjsyxx199901004
    [37] XING J, LIU X F, ZHANG Q, et al.. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers[J]. Nano Letters, 2015, 15(7):4571-4577. doi: 10.1021/acs.nanolett.5b01166
    [38] KAO T S, HONG K B, CHOU Y H, et al.. Localized surface plasmon for enhanced lasing performance in solution-processed perovskites[J]. Optics Express, 2016, 24(18):20696-20702. doi: 10.1364/OE.24.020696
    [39] GU ZH Y, WANG K Y, SUN W ZH, et al.. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers[J]. Advanced Optical Materials, 2016, 4(3):472-479. doi: 10.1002/adom.201500597
    [40] ZHANG W, PENG L, LIU J, et al.. Controlling the cavity structures of two-photon-pumped perovskite microlasers[J]. Advanced Materials, 2016, 28(21):4040-4046. doi: 10.1002/adma.201505927
    [41] YANG B, MAO X, YANG S Q, et al.. Low Threshold two-photon-pumped amplified spontaneous emission in CH3NH3PbBr3 microdisks[J]. ACS Applied Materials & Interfaces, 2016, 8(30):19587-19592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cd83c2bcced647a3343b959b88d4c90
    [42] GAO Y SH, WANG SH, HUANG C, et al.. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers[J]. Scientific Reports, 2017, 7:45391. doi: 10.1038/srep45391
    [43] KUMAR M H, DHARANI S, LEONG W L, et al.. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation[J]. Advanced Materials, 2014, 26(41):7122-7127. doi: 10.1002/adma.201401991
    [44] DANG Y Y, ZHOU Y A, LIU X L, et al.. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth[J]. Angewandte Chemie International Edition, 2016, 55(10):3447-3450. doi: 10.1002/anie.201511792
    [45] PARK B W, PHILIPPE B, ZHANG X L, et al.. Bismuth based hybrid perovskites A3Bi2I9(A:Methylammonium or cesium) for solar cell application[J]. Advanced Materials, 2015, 27(43):6806-6813. doi: 10.1002/adma.201501978
    [46] FU Y P, ZHU H M, STOUMPOS C C, et al.. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites(CsPbX3, X=Cl, Br, I)[J]. ACS Nano, 2016, 10(8):7963-7972. doi: 10.1021/acsnano.6b03916
    [47] JEON T, KIM S J, YOON J, et al.. Hybrid perovskites:effective crystal growth for optoelectronic applications[J]. Advanced Energy Materials, 2017, 7(19):1602596. doi: 10.1002/aenm.201602596
    [48] VELDHUIS S A, BOIX P P, YANTARA N, et al.. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 2016, 28(32):6804-6834. doi: 10.1002/adma.201600669
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  3854
  • HTML全文浏览量:  1275
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-03-01
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回