留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于喷涂法制备氧化锡薄膜的钙钛矿太阳能电池

王熹 赵志国 秦校军 熊继光 董超 白阳 李煜璟 陈棋

王熹, 赵志国, 秦校军, 熊继光, 董超, 白阳, 李煜璟, 陈棋. 基于喷涂法制备氧化锡薄膜的钙钛矿太阳能电池[J]. 中国光学, 2019, 12(5): 1040-1047. doi: 10.3788/CO.20191205.1040
引用本文: 王熹, 赵志国, 秦校军, 熊继光, 董超, 白阳, 李煜璟, 陈棋. 基于喷涂法制备氧化锡薄膜的钙钛矿太阳能电池[J]. 中国光学, 2019, 12(5): 1040-1047. doi: 10.3788/CO.20191205.1040
WANG Xi, ZHAO Zhi-guo, QIN Xiao-jun, XIONG Ji-guang, DONG Chao, BAI Yang, LI Yu-jing, CHEN Qi. Perovskite solar cells based on a spray-coating tin oxide film[J]. Chinese Optics, 2019, 12(5): 1040-1047. doi: 10.3788/CO.20191205.1040
Citation: WANG Xi, ZHAO Zhi-guo, QIN Xiao-jun, XIONG Ji-guang, DONG Chao, BAI Yang, LI Yu-jing, CHEN Qi. Perovskite solar cells based on a spray-coating tin oxide film[J]. Chinese Optics, 2019, 12(5): 1040-1047. doi: 10.3788/CO.20191205.1040

基于喷涂法制备氧化锡薄膜的钙钛矿太阳能电池

doi: 10.3788/CO.20191205.1040
基金项目: 

国家自然科学基金项目 51673025

详细信息
    作者简介:

    王熹(1998-), 男, 河南安阳人, 2016年进入北京理工大学材料学院学习, 2018年进入华能集团清洁能源研究院参加钙钛矿太阳能电池的产业化项目实习, 主要从事有机无机杂化金属卤素钙钛矿太阳能电池的研究。E-mail:1120162210@bit.edu.cn

    赵志国(1983-), 男, 河北霸州人, 2007年于清华大学获得学士学位, 2012年于中国科学院化学研究所获得博士学位, 目前在中国华能集团清洁能源技术研究院担任高级工程师, 从事新能源、光伏领域的技术研发与产业化工作。E-mail:zg_zhao@qny.chng.com.cn

    陈棋(1982-), 男, 江苏无锡人, 教授、博士生导师, 2007年于清华大学获得硕士学位, 2012年于加州大学洛杉矶分校获得博士学位, 主要从事有机无机杂化及复合材料的开发与应用方面的研究, 包括光电材料制备、薄膜太阳能电池的制备及工艺开发等交叉前沿项目。E-mail:qic@bit.edu.cn

  • 中图分类号: O649.4

Perovskite solar cells based on a spray-coating tin oxide film

Funds: 

National Natural Science Foundation of China 51673025

More Information
  • 摘要: 电子传输层对于钙钛矿太阳能电池载流子的抽取与传输起着至关重要的作用,氧化锡由于其优异特性被作为电子传输层广泛应用于正式平板结构钙钛矿太阳能电池中。而目前制备氧化锡薄膜的工艺方法无法满足大面积、自动化等工业需求,亟待发掘新的工艺手段。为解决此问题,本文使用喷涂法成功制备了高质量的氧化锡薄膜。实验结果表明,基于喷涂法制备氧化锡薄膜的钙钛矿太阳能电池对于氧化锡薄膜的厚度有较高的依赖性,通过优化薄膜厚度,电池的光电转化效率可达到15.72%;喷涂得到的氧化锡薄膜存在咖啡环现象,使得串联电阻提高,限制了光电转化效率,但可以通过进一步细化液滴来解决。本文为钙钛矿产业化进程中高质量氧化锡薄膜的制备提供了新的思路与方法。
  • 图  1  钙钛矿太阳能电池的结构示意图

    Figure  1.  Structure diagram of perovskite solar cell

    图  2  喷涂装置及过程示意图

    Figure  2.  Schematic of spraying machine and spraying process

    图  3  (a) 器件性能与喷涂时间的关系;(b)器件的J-V曲线图

    Figure  3.  (a)Relation between device performance and spraying time; (b)J-V curve of the device with optimal performance

    图  4  器件串联电阻、并联电阻与喷涂时间的关系

    Figure  4.  Relation between the series resistance, shunt resistance of solar cells and spraying time

    图  5  基于最优化喷涂氧化锡(1)与基于旋涂氧化锡(2)的器件电化学阻抗Nyquist谱图

    Figure  5.  Nyquist plots for EIS measurement of optimal spray-coating-SnO2-based and spin-coating-SnO2-based solar cells

    图  6  在最优化条件下的喷涂氧化锡扫描电子显微镜图谱

    Figure  6.  SEM image of spraying SnO2 under optimized condition

    图  7  (a) 喷涂时间为40 s和(b)喷涂时间为80 s的氧化锡薄膜光学显微镜图谱

    Figure  7.  Optical microscopic images of spray-coating SnO2 with spraying time of (a)40 s and 80 s(b)

    表  1  不同喷涂时间下氧化锡器件的光电性能

    Table  1.   Photoelectric performance of devices with spray-coating SnO2 films prepared with different spraying time

    Time/s Voc/V Jsc/(A·cm-2) PCE/% FF/%
    40 0.84 13.02 3.80 34.62
    50 0.95 21.87 13.03 62.87
    55 1.02 22.03 15.72 70.03
    80 0.87 18.65 6.87 42.16
    下载: 导出CSV

    表  2  两种工艺之间最优器件性能对比

    Table  2.   Photoelectrical performance comparison for the devices prepared by spinning coating and spraying coating devices

    Type Voc/V Jsc/(A·cm-2) PCE/% FF/%
    Spinnig coating 1.04 22.43 18.14 77.48
    Spraying coating 1.02 22.03 15.72 70.03
    下载: 导出CSV
  • [1] KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051. doi: 10.1021/ja809598r
    [2] ZHOU H P, CHEN Q, LI G, et al.. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196):542-546. doi: 10.1126/science.1254050
    [3] YANG W S, NOH J H, JEON N J, et al.. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240):1234-1237. doi: 10.1126/science.aaa9272
    [4] BI D Q, YI C Y, LUO J SH, et al.. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature Energy, 2016, 1(10):16142. doi: 10.1038/nenergy.2016.142
    [5] National Renewable Energy Laboratory. Best research-cell efficiency[EB/OL]. https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
    [6] LEIJTENS T, EPERON G E, PATHAK S, et al.. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4:2885. doi: 10.1038/ncomms3885
    [7] JIANG Q, ZHANG X W, YOU J B. SnO2:a wonderful electron transport layer for perovskite solar cells[J]. Small, 2018, 14(31):1801154. doi: 10.1002/smll.201801154
    [8] JIANG Q, CHU Z M, WANG P Y, et al.. Planar-structure perovskite solar cells with efficiency beyond 21%[J]. Advanced Materials, 2017, 29(46):1703852. doi: 10.1002/adma.201703852
    [9] BAENA J P C, STEIER L, TRESS W, et al.. Highly efficient planar perovskite solar cells through band alignment engineering[J]. Energy & Environmental Science, 2015, 8(10):2928-2934. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235545163/
    [10] ANARAKI E H, KERMANPUR A, STEIER L, et al.. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy & Environmental Science, 2016, 9(10):3128-3134. http://cn.bing.com/academic/profile?id=324103d1934e557bbf32b0424bc07363&encoded=0&v=paper_preview&mkt=zh-cn
    [11] YANG G, LEI H W, TAO H, et al.. Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers[J]. Small, 2017, 13(2):1601769. doi: 10.1002/smll.201601769
    [12] LIU X, TSAI K W, ZHU Z L, et al.. A low-temperature, solution processable tin oxide electron-transporting layer prepared by the dual-fuel combusion method for efficient perovskite solar cells[J]. Advanced Materials Interfaces, 2016, 3(13):1600122. doi: 10.1002/admi.201600122
    [13] CHEN J Y, CHUEH C C, ZHU Z L, et al.. Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2017, 164:47-55. doi: 10.1016/j.solmat.2017.02.008
    [14] 胡明江, 晋兵营.基于CuO/ZnO异质结纳米花的薄膜型丙酮传感器研究[J].分析化学, 2019, 47(3):363-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201903005

    HU M J, JIN B Y. Research on film type acetone sensor based on copper oxide/zinc oxide heterostructure nanoflower[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3):363-370.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201903005
    [15] 王艺, 姜晓, 谭峰, 等.新型氧化铈/氧化锆-梯度扩散薄膜技术用于水体和沉积物中无机砷的形态分析[J].分析化学, 2018, 46(11):1829-1835. doi: 10.11895/j.issn.0253-3820.181395

    WANG Y, JIANG X, TAN F, et al.. CeO2/ZrO2-based diffusive gradients in thin films technique for measurement of As(Ⅲ) and As(Ⅴ) in water and sediment[J]. Chinese Journal of Analytical Chemistry, 2018, 46(11):1829-1835.(in Chinese) doi: 10.11895/j.issn.0253-3820.181395
    [16] 黄芳龙, 陈旦初.金属氧化物薄膜的超声雾化喷涂[J].太阳能学报, 1989, 10(4):418-420. http://www.cnki.com.cn/Article/CJFDTotal-TYLX198904014.htm

    HUANG F L, CHEN D CH. Ultrasonic atomization spraying of metal oxide film[J]. Acta Energiae Solaris Sinica, 1989, 10(4):418-420.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-TYLX198904014.htm
    [17] 贾莉, 吕喆, 黄喜强, 等.用于燃料电池的氧化锆薄膜制备方法进展[J].电源技术, 2004, 28(7):449-451. doi: 10.3969/j.issn.1002-087X.2004.07.016

    JIA L, LÜ ZH, HUANG X Q, et al.. Progress on manufacturing of zirconia film for fuel cells[J]. Chinese Journal of Power Sources, 2004, 28(7):449-451.(in Chinese) doi: 10.3969/j.issn.1002-087X.2004.07.016
    [18] KRUNKS M, MELLIKOV E. Zinc oxide thin films by the spray pyrolysis method[J]. Thin Solid Films, 1995, 270(1-2):33-36. doi: 10.1016/0040-6090(95)06893-7
    [19] SHINDE V R MAHADIK S B, GUJAR T P, et al.. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis[J]. Applied Surface Science, 2006, 252(20):487-7492. https://www.sciencedirect.com/science/article/pii/S0169433205012602
    [20] PEREDNIS D, GAUCKLER L J. Thin film deposition using spray pyrolysis[J]. Journal of Electroceramics, 2005, 14(2):103-111. doi: 10.1007/s10832-005-0870-x
    [21] SHAMALA K S, MURTHY L C S, RAO K N. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods[J]. Bulletin of Materials Science, 2004, 27(3):295-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b62d9607fcfac572799a0964339740cc
    [22] CHEN B, YANG M J, PRIYA S, et al.. Origin of J-V hysteresis in perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5):905-917. doi: 10.1021/acs.jpclett.6b00215
    [23] TU B, SHAO Y F, CHEN W, et al.. Novel molecular doping mechanism for n-doping of SnO2 via triphenylphosphine oxide and its effect on perovskite solar cells[J]. Advanced Materials, 2019, 31(15):1805944. doi: 10.1002/adma.201805944
    [24] GUILLÉN E, RAMOS F J, ANTA J A, et al.. Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques[J]. The Journal of Physical Chemistry C, 2014, 118(40):22913-22922. doi: 10.1021/jp5069076
    [25] 孙加振, 邝旻翾, 宋延林.喷墨打印中"咖啡环"效应的调控及应用[J].化学进展, 2015, 27(8):979-985. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201508001

    SUN J ZH, KUANG M X, SONG Y L. Control and application of "coffee ring" effect in inkjet printing[J]. Progress in Chemistry, 2015, 27(8):979-985.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201508001
    [26] SEARS W M, GEE M A. Mechanics of film formation during the spray pyrolysis of tin oxide[J]. Thin Solid Films, 1988, 165(1):265-277. doi: 10.1016/0040-6090(88)90698-0
    [27] 张培旭, 金永日, 崔俐, 等.基于超声喷泉的超声雾化结合固相萃取法提取西洋参叶中8种人参皂苷[J].分析化学, 2018, 46(4):594-600. http://d.old.wanfangdata.com.cn/Periodical/fxhx201804019

    ZHANG P X, JIN Y R, CUI L, et al.. Extraction of eight ginsenosides from leaves of Panax quinquefolium L. by ultrasoinc fountain-based ultrasonic-assisted nebulization extraction coupled with solid phase extraction[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4):594-600.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201804019
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  602
  • HTML全文浏览量:  132
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-07
  • 修回日期:  2019-04-03
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回