留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理的钙钛矿材料空位缺陷研究

袁海东 周龙 苏杰 林珍华 常晶晶 郝跃

袁海东, 周龙, 苏杰, 林珍华, 常晶晶, 郝跃. 基于第一性原理的钙钛矿材料空位缺陷研究[J]. 中国光学(中英文), 2019, 12(5): 1048-1056. doi: 10.3788/CO.20191205.1048
引用本文: 袁海东, 周龙, 苏杰, 林珍华, 常晶晶, 郝跃. 基于第一性原理的钙钛矿材料空位缺陷研究[J]. 中国光学(中英文), 2019, 12(5): 1048-1056. doi: 10.3788/CO.20191205.1048
YUAN Hai-dong, ZHOU Long, SU Jie, LIN Zhen-hua, CHANG Jing-jing, HAO Yue. Investigation of self-doping in perovskites with vacancy defects based on first principles[J]. Chinese Optics, 2019, 12(5): 1048-1056. doi: 10.3788/CO.20191205.1048
Citation: YUAN Hai-dong, ZHOU Long, SU Jie, LIN Zhen-hua, CHANG Jing-jing, HAO Yue. Investigation of self-doping in perovskites with vacancy defects based on first principles[J]. Chinese Optics, 2019, 12(5): 1048-1056. doi: 10.3788/CO.20191205.1048

基于第一性原理的钙钛矿材料空位缺陷研究

基金项目: 

国家自然科学基金项目 61604119

陕西省自然科学基金项目 2017JQ6031

详细信息
    作者简介:

    袁海东(1995-), 男, 重庆忠县人, 硕士研究生, 2018年于西安电子科技大学获得学士学位, 现于西安电子科技大学攻读硕士学位, 主要从事钙钛矿太阳能电池方面的研究。E-mail:finaler123@163.com

    常晶晶(1988-), 男, 河南三门峡人, 教授, 2010年6月于四川大学获得学士学位, 2014年于新加坡国立大学获得博士学位, 毕业后继续在新加坡国立大学从事博士后研究工作。2015年通过"华山学者"菁英人才计划加入西安电子科技大学微电子学院。2016年入选国家"青年千人"人才计划。主要研究方向:1.有机及氧化物晶体管的制备及应用。2.有机及钙钛矿太阳能电池的相关研究。3.柔性印刷电子的制备及应用。E-mail:jjingchang@xidian.edu.cn

  • 中图分类号: O649.4

Investigation of self-doping in perovskites with vacancy defects based on first principles

Funds: 

National Natural Science Foundation of China 61604119

Natural Science Foundation of Shaanxi Province 2017JQ6031

More Information
  • 摘要: 为了获得优异的钙钛矿材料,本文系统地研究有机-无机杂化钙钛矿材料(CH3NH3PbI3)的电子结构和光学特性,同时探究了空位缺陷对其光学性质的影响。首先,采用Materials Studio软件构建本征钙钛矿材料的电子结构,并基于广义梯度近似的方法(GGA)和Perdew-Burker-Ernzerhof(PBE)泛函,优化其电子结构并计算本征钙钛矿材料的电学和光学特性。通过采用范德华力修正,解决了密度泛函理论低估带隙的问题,得到准确的带隙。其次,研究不同的空位缺陷(Pb空位和I空位缺陷)对钙钛矿材料的电子结构的影响,并计算其能带、态密度和光学性质。最后通过对比本征钙钛矿材料和空位缺陷的钙钛矿材料特性,从微观机理研究空位缺陷对其光学性质的影响。结果表明:本征钙钛矿材料带隙为1.52 eV,这与实验测得的带隙值基本吻合;同时研究发现Pb空位缺陷会导致钙钛矿呈偏P型材料;I空位缺陷会导致钙钛矿呈偏N型材料。空位缺陷能够有效地改变钙钛矿材料的介电函数和光吸收谱,对于钙钛矿材料的研究及在光电器件领域的应用具有重要的理论价值。

     

  • 图 1  本征钙钛矿和空位缺陷钙钛矿的电子结构

    Figure 1.  Electronic structures of intrinsic perovskites and perovskites with vacancy defects

    图 2  空位缺陷钙钛矿材料的形成能

    Figure 2.  Formation energy of perovskites with vacancy defects

    图 3  本征钙钛矿材料的能带图

    Figure 3.  Energy band structure of initial perovskites

    图 4  本征钙钛矿材料的态密度

    Figure 4.  Density of state for intrinsic perovskites

    图 5  空位缺陷钙钛矿的能带图

    Figure 5.  Band structures of perovskties with Pb and I vacancy defects

    图 6  空位缺陷钙钛矿的态密度图

    Figure 6.  Density of state for perovskites with Pb and I vacancy defects

    图 7  本征钙钛矿和空位缺陷钙钛矿的差分电荷密度图

    Figure 7.  Difference charge densities of intrinsic perovskites and perovskites with vacancy defects

    图 8  钙钛矿材料的光学特性

    Figure 8.  Optical properties of perovskites

    表  1  本征钙钛矿和空位缺陷钙钛矿的晶格常数、键长和键角

    Table  1.   Lattice constants, bond length and octahedral tilting angles(θ) of intrinsic perovskites and perovskites with vacancy defects

    a b c Pb-I θ
    本征钙钛矿理论值 8.879 8.929 12.828 3.16~3.28 23.0~27.9
    本征钙钛矿实验值 8.91 8.91 12.725 3.15~3.24 23.2~27.9
    Pb空位缺陷 8.62 8.65 12.91 3.02~3.15 24.3~28.6
    I空位缺陷 8.71 8.79 12.97 3.2~3.32 26.8~29.7
    下载: 导出CSV
  • [1] LEE M M, TEUSCHER J, MIYASAKA T, et al.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647. doi: 10.1126/science.1228604
    [2] STRANKS S D, SNAITH H J. Metal-halide perovskites for photovoltaic and light-emitting devices[J]. Nature Nanotechnology, 2015, 10(5):391-402. doi: 10.1038/nnano.2015.90
    [3] WANG J P, WANG N N, JIN Y ZH, et al.. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes[J]. Advanced Materials, 2015, 27(14):2311-2316. doi: 10.1002/adma.201405217
    [4] LI F, MA CH, WANG H, et al.. Ambipolar solution-processed hybrid perovskite phototransistors[J]. Nature Communications, 2015, 6:8238. doi: 10.1038/ncomms9238
    [5] CHIN X Y, CORTECCHIA D, YIN J, et al.. Lead iodide perovskite light-emitting field-effect transistor[J]. Nature Communications, 2015, 6:7383. doi: 10.1038/ncomms8383
    [6] ZHU H M, Fu Y P, MENG F, et al.. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6):636-642. doi: 10.1038/nmat4271
    [7] YOO E J, LYU M, YUN J H, et al.. Resistive switching behavior in organic inorganic hybrid CH3NH3PbI3-xClx perovskite for resistive random access memory devices[J]. Advanced Materials, 2015, 27(40):6170-6175. doi: 10.1002/adma.201502889
    [8] KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051. doi: 10.1021/ja809598r
    [9] National Renewable Energy Laboratory(NREL). Research cell efficiency records[EB/OL].[2019-01-10]. https://www.nrel.gov/pv/assets/images/efficiencychart.png.
    [10] ZHOU Y Y, GAME O S, PANG SH P, et al.. Microstructures of organometal trihalide perovskites for solar cells:their evolution from solutions and characterization[J]. The Journal of Physical Chemistry Letters, 2015, 6(23):4827-4839. doi: 10.1021/acs.jpclett.5b01843
    [11] ZHENG L L, ZHANG D F, MA Y ZH, et al.. Morphology control of the perovskite films for efficient solar cells[J]. Dalton Transactions, 2015, 44(23):10582-10593. doi: 10.1039/C4DT03869J
    [12] MEI A Y, LI X, LIU L F, et al.. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194):295-298. doi: 10.1126/science.1254763
    [13] DOCAMPO P, BALL J M, DARWICH M, et al.. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J]. Nature Communications, 2013, 4:2761. doi: 10.1038/ncomms3761
    [14] ROLDÁN-CARMONA C, MALINKIEWICZ O, SORIANO A, et al.. Flexible high efficiency perovskite solar cells[J]. Energy & Environmental Science, 2014, 7(3):994-997. http://cn.bing.com/academic/profile?id=54837badce92fa9ac689833770abbb78&encoded=0&v=paper_preview&mkt=zh-cn
    [15] DYMSHITS A, ROTEM A, ETGAR L, et al.. High voltage in hole conductor free organometal halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(48):20776-20781. doi: 10.1039/C4TA05613B
    [16] HEO J H, SONG D H, IM S H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process[J]. Advanced Materials, 2014, 26(48):8179-8183. doi: 10.1002/adma.201403140
    [17] LIANG P W, CHUEH C C, XIN X K, et al.. High-performance planar-heterojunction solar cells based on ternary halide large-band-gap perovskites[J]. Advanced Energy Materials, 2015, 5(1):1400960. doi: 10.1002/aenm.201400960
    [18] DIMESSO L, DIMAMAY M, HAMBURGER M, et al.. Properties of CH3NH3PbX3(X=I, Br, Cl) powders as precursors for organic/inorganic solar cells[J]. Chemistry of Materials, 2014, 26(23):6762-6770. doi: 10.1021/cm503240k
    [19] NAVAS J, SÁNCHEZ-CORONILLA A, GALLARDO J J, et al.. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+[J]. Nanoscale, 2015, 7(14):6216-6229. doi: 10.1039/C5NR00041F
    [20] FENG H J, PAUDEL T R, TSYMBAL E Y, et al.. Tunable optical properties and charge separation in CH3NH3SnxPb1-xI3/TiO2-based planar perovskites cells[J]. Journal of the American Chemical Society, 2015, 137(25):8227-8236. doi: 10.1021/jacs.5b04015
    [21] ABDELHADY A L, SAIDAMINOV M I, MURALI B, et al.. Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals[J]. The Journal of Physical Chemistry Letters, 2016, 7(2):295-301. doi: 10.1021/acs.jpclett.5b02681
    [22] KAZIM S, NAZEERUDDIN M K, GRÄTZEL M, et al.. Perovskite as light harvester:a game changer in photovoltaics[J]. Angewandte Chemie International Edition, 2014, 53(11):2812-2824. doi: 10.1002/anie.201308719
    [23] CHANG J J, LIN ZH H, ZHU H, et al.. Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions[J]. Journal of Materials Chemistry A, 2016, 4(42):16546-16552. doi: 10.1039/C6TA06851K
    [24] WANG ZH K, LI M, YANG Y G, et al.. High efficiency Pb-In binary metal perovskite solar cells[J]. Advanced Materials, 2016, 28(31):6695-6703. doi: 10.1002/adma.201600626
    [25] CAO D H, STOUMPOS C C, MALLIAKAS C D, et al.. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?[J]. APL Materials, 2014, 2(9):091101. doi: 10.1063/1.4895038
    [26] LEE Y H, LUO J SH, HUMPHRY-BAKER R, et al.. Unraveling the reasons for efficiency loss in perovskite solar cells[J]. Advanced Functional Materials, 2015, 25(25):3925-3933. doi: 10.1002/adfm.201501024
    [27] KIM J, LEE S H, LEE J H, et al.. The role of intrinsic defects in methylammonium lead iodide perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(8):1312-1317. doi: 10.1021/jz500370k
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2387
  • HTML全文浏览量:  657
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-16
  • 修回日期:  2019-03-06
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回