留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Se和有机无机钙钛矿异质结的宽光谱光电探测器制备及其光电特性研究

陈洪宇 王月飞 闫珺 李林 王贺彬 卞万朋 李炳生

陈洪宇, 王月飞, 闫珺, 李林, 王贺彬, 卞万朋, 李炳生. 基于Se和有机无机钙钛矿异质结的宽光谱光电探测器制备及其光电特性研究[J]. 中国光学, 2019, 12(5): 1057-1063. doi: 10.3788/CO.20191205.1057
引用本文: 陈洪宇, 王月飞, 闫珺, 李林, 王贺彬, 卞万朋, 李炳生. 基于Se和有机无机钙钛矿异质结的宽光谱光电探测器制备及其光电特性研究[J]. 中国光学, 2019, 12(5): 1057-1063. doi: 10.3788/CO.20191205.1057
CHEN Hong-yu, WANG Yue-fei, YAN Jun, LI Lin, WANG He-bin, BIAN Wan-peng, LI Bing-sheng. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. doi: 10.3788/CO.20191205.1057
Citation: CHEN Hong-yu, WANG Yue-fei, YAN Jun, LI Lin, WANG He-bin, BIAN Wan-peng, LI Bing-sheng. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. doi: 10.3788/CO.20191205.1057

基于Se和有机无机钙钛矿异质结的宽光谱光电探测器制备及其光电特性研究

doi: 10.3788/CO.20191205.1057
基金项目: 

国家自然科学基金 61874037

国家自然科学基金 11474076

微系统与微结构制造教育部重点实验室开放课题 2017KM003

哈尔滨工业大学创新课题 HIT.NSRIF.2019060

详细信息
    作者简介:

    陈洪宇(1986-), 女, 黑龙江哈尔滨人, 讲师, 2014年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事半导体光电材料与器件的研究工作。E-mail:chenhy@hit.edu.cn

    王月飞(1992—),男,河北邢台人,博士研究生,2014年于哈尔滨工业大学获得学士学位,2017年于哈尔滨工业大学获得硕士学位,主要从事宽禁带半导体材料与器件方面的研究。E-mail:wangyuefei@stu.hit.edu.cn

    李炳生(1972-), 男, 河北沧州人, 教授, 2002年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事宽带隙半导体薄膜外延及紫外光电子器件、纳米材料生物医学工程等方面的研究。E-mail:libingsheng@hotmail.com

  • 共同贡献作者
  • 中图分类号: TP394.1;TH691.9

Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction

Funds: 

National Natural Science Foundation of China 61874037

National Natural Science Foundation of China 11474076

Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education 2017KM003

Fundamental Research Funds for the Central Universities HIT.NSRIF.2019060

More Information
  • 摘要: 针对目前高效、稳定的p型掺杂一直较难实现的问题,本文采用化学气相沉积方法制备出了高结晶质量的p型半导体材料Se微米线。同时,还制备出了基于单根Se微米线的光电探测器,其在紫外和可见光波段有较宽的响应范围,响应截止边为675 nm。该器件在5 V偏压下的峰值响应度可达2.8 mA/W(600 nm)。在此基础上,利用p型Se微米线与钙钛矿材料CH3NH3PbCl3制备了p-n结型器件,与单根Se微米线光电探测器相比,响应时间和响应度都有明显提升,尤其是异质结的响应度比纯Se微米线提高了850%。这一研究结果说明本文制备的有机无机复合结构p-n结非常有望应用到高性能光电探测器中。
    These authors contribute equally
    1)  共同贡献作者
  • 图  1  Se微米线的扫描电镜照片(a)低放大倍率; (b)单根Se微米线的放大图片。插图为微米线的断面图。(c)(d)分散在石英衬底上为不同倍率的MAPbCl3扫描电镜照片

    Figure  1.  SEM images of as-grown Se microwires on Si substrate. (a)Low magnification SEM image. (b)High magnification SEM image. The inset is the cross section of Se MW. (c), (d)The SEM images of as-grown MAPbCl3 on quartz substrate

    图  2  (a) Se微米线的XRD图;(b)MAPbCl3薄膜的XRD图

    Figure  2.  (a)XRD pattern of Se MW. (b)XRD pattern of MAPbCl3 film

    图  3  (a) 单根p-Se微米线MSM器件I-V曲线;(b)p-Se微米线与n-MAPbCl3异质结器件的I-V曲线

    Figure  3.  (a)I-V characteristics of MSM device based on single p-Se microwire in the dark. (b)I-V characteristics of p-n heterojunction based on Se MW and n-MAPbCl3 in the dark

    图  4  不同器件在5 V反偏压下的光谱响应曲线(a)及600 nm光照下电流变化曲线(b)

    Figure  4.  (a)Spectral response of the devices at 5 V bias and (b)on/off switching upon 600 nm light illumination at 5 V bias

    图  5  Se微米线和MAPbCl3异质结能带示意图

    Figure  5.  Schematic illustration of energy levels of Se MW/MAPbCl3 heterojunction

  • [1] CHEN H Y, LIU H, ZHANG ZH M, et al.. Nanostructured photodetectors:from ultraviolet to terahertz[J]. Advanced Materials, 2016, 28(3):403-433. doi: 10.1002/adma.201503534
    [2] ZHANG D, ZHENG W, LIN R C, et al.. High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed[J]. Journal of Alloys and Compounds, 2018, 735:150-154. doi: 10.1016/j.jallcom.2017.11.037
    [3] OH S, KIM C K, KIM J. High responsivity β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with ultraviolet transparent graphene electrodes[J]. ACS Photonics, 2018, 5(3):1123-1128. doi: 10.1021/acsphotonics.7b01486
    [4] LI D B, JIANG K, SUN X J, et al.. Algan photonics:recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1):43-110. doi: 10.1364/AOP.10.000043
    [5] XU ZH X, ZHANG Y L, WANG ZH N. ZnO-based photodetector:from photon detector to pyro-phototronic effect enhanced detector[J]. Journal of Physics D:Applied Physics, 2019, 52(22):223001. doi: 10.1088/1361-6463/ab0728
    [6] 孙华山, 刘可为, 陈洪宇, 等.Au电极厚度对MgZnO紫外探测器性能的影响[J].发光学报, 2015, 36(2):200-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201502012

    SUN H SH, LIU K W, CHEN H Y, et al.. Effect of Au electrode thickness on the performance of MgZnO UV detector[J]. Chinese Journal of Luminescence, 2015, 36(2):200-205.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201502012
    [7] 薛金玲, 马剑钢.化学气相沉积法制备β-Ga2O3纳米结构及其缺陷发光性质研究[J].发光学报, 2017, 38(10):1273-1279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201710002

    XUE J L, MA J G. Defects luminescence behavior of β-Ga2O3 nanostructures synthesized by chemical vapor deposition[J]. Chinese Journal of Luminescence, 2017, 38(10):1273-1279.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201710002
    [8] QI J, QIAO W Q, ZHOU X K, et al.. High-detectivity all-polymer photodetectors with spectral response from 300 to 1100 nm[J]. Macromolecular Chemistry and Physics, 2016, 217(15):1683-1689. doi: 10.1002/macp.201600061
    [9] LUO L B, YANG X B, LIANG F X, et al.. Transparent and flexible selenium nanobelt-based visible light photodetector[J]. CrystEngComm, 2012, 14(6):1942-1947. doi: 10.1039/c2ce06420k
    [10] QIU X D, WANG Z J, HOU X T, et al.. Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon[J]. Photonics Research, 2019, 7(3):351-358. doi: 10.1364/PRJ.7.000351
    [11] YU P P, HU K, CHEN H Y, et al.. Novel p-p heterojunctions self-powered broadband photodetectors with ultrafast speed and high responsivity[J]. Advanced Functional Materials, 2017, 27(38):1703166. doi: 10.1002/adfm.201703166
    [12] GONG F, FANG H H, WANG P, et al.. Visible to near-infrared photodetectors based on MoS2 vertical schottky junctions[J]. Nanotechnology, 2017, 28(48):484002. doi: 10.1088/1361-6528/aa9172
    [13] WANG L, JIE J SH, SHAO ZH B, et al.. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Advanced Functional Materials, 2015, 25(19):2910-2919. doi: 10.1002/adfm.201500216
    [14] ROGALSKI A, ANTOSZEWSKI J, FARAONE L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009, 105(9):091101. doi: 10.1063/1.3099572
    [15] MELEDIN D V, MARRONE D P, TONG C Y E, et al.. A 1-Thz superconducting hot-electron-bolometer receiver for astronomical observations[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10):2338-2343. doi: 10.1109/TMTT.2004.835979
    [16] TONG C Y E, MELEDIN D V, MARRONE D P, et al.. Near field vector beam measurements at 1 THz[J]. IEEE Microwave and Wireless Components Letters, 2003, 13(6):235-237. doi: 10.1109/LMWC.2003.814602
    [17] MITTLEMAN D M. Twenty years of terahertz imaging[J]. Optics Express, 2018, 26(8):9417-9431. doi: 10.1364/OE.26.009417
    [18] CHEN H Y, LIU K W, HU L F, et al.. New concept ultraviolet photodetectors[J]. Mater Today, 2015, 18(9):493-502. doi: 10.1016/j.mattod.2015.06.001
    [19] SZE S M. Semiconductor Devices:Physics and Technology[M]. 2nd ed. New York:John Wiley & Sons, 2008.
    [20] ZHAO B, WANG F, CHEN H Y, et al.. An ultrahigh responsivity(9.7 mA W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures[J]. Advanced Functional Materials, 2017, 27(17):1700264. doi: 10.1002/adfm.201700264
    [21] HAJNAL Z, MIRÓ J, KISS G, et al.. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3[J]. Journal of Applied Physics, 1999, 86(7):3792-3796. doi: 10.1063/1.371289
    [22] MORT J. Acoustoelectric current saturation in trigonal selenium[J]. Physical Review Letters, 1967, 18(14):540-543. doi: 10.1103/PhysRevLett.18.540
    [23] MASUZAWA T, SAITO I, YAMADA T, et al.. Development of an amorphous selenium-based photodetector driven by a diamond cold cathode[J]. Sensors, 2013, 13(10):13744-13778. doi: 10.3390/s131013744
    [24] LIU CH, LI W ZH, ZHANG C L, et al.. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%[J]. Journal of the American Chemical Society, 2018, 140(11):3825-3828. doi: 10.1021/jacs.7b13229
    [25] MACULAN G, SHEIKH A D, ABDELHADY A L, et al.. CH3NH3PbCl3 single crystals:inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters, 2015, 6(19):3781-3786. doi: 10.1021/acs.jpclett.5b01666
    [26] HU K, CHEN H Y, JIANG M M, et al.. Broadband photoresponse enhancement of a high-performance t-Se microtube photodetector by plasmonic metallic nanoparticles[J]. Advanced Functional Materials, 2016, 26(36):6641-6648. doi: 10.1002/adfm.201602408
  • 加载中
图(5)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  80
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 修回日期:  2019-06-11
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回