Measurement of instantaneous-fading correlation in bidirectional optical channels through atmospheric turbulence
-
摘要: 为证明双向光传输系统中大气湍流信道的互易性,提出一种测量瞬时接收信号衰落相关性的方法,并建立了分析测量数据的数学模型。在相距883 m的两栋高楼之间进行双向光传输测量实验,根据测得的光斑图像数据,对信道的瞬时衰落相关性进行验证,并分析了实际场景下归一化接收信号起伏方差对相关系数的影响。结果表明:两个相反方向的光信道瞬时衰落相关系数大部分均在0.85以上,最高可达0.95,证明了双向大气湍流光信道之间存在良好的互易性;且随着归一化接收信号起伏方差的增大,相关系数呈轻微下降的趋势。Abstract: To prove the reciprocity of an atmospheric turbulent channel in bidirectional optical transmission systems, we propose a method for measuring the correlation between the fading of instantaneously received signals and establish a mathematical model for analyzing the measurement data. Experiments of bidirectional optical transmission measurements were carried out between two tall buildings separated by 883 m. According to the measured speckle image data, we verified the instantaneous-fading correlation of the channel and analyzed the effect of the normalized received signal fluctuation variance on the correlation coefficient in practical scenarios. It was shown that most of the instantaneous-fading correlation coefficients of optical channels in the two counter-directions were above 0.85 and even up to 0.95, which proves that reciprocity can be well maintained for a bidirectional turbulent optical channel. With an increasing fluctuation variance of the normalized received optical signal, the correlation coefficient is slightly descending.
-
图 3 (a)、(b)和(c)分别为根据不同时间段的测量数据作图。从左至右依次为归一化接收信号随时间变化图、A端归一化接收信号频数分布直方图、B端归一化接收信号频数分布直方图,其中红色代表A端测量数据,绿色代表B端测量数据
Figure 3. (a), (b), and (c) are plotted according to measurement data at different time. From left to right, the normalized received signal changes with time, the normalized received signal frequency distribution histogram of A-end, and the normalized received signal frequency distribution histogram of B-end, where the red represents measurement data at A-end, and green represents the measurement data at B-end
-
[1] 付强, 姜会林, 王晓曼, 等.空间激光通信研究现状及发展趋势[J].中国光学, 2012, 5(2):116-125. doi: 10.3969/j.issn.2095-1531.2012.02.004FU Q, JIANG H L, WANG X M, et al.. Research status and development trend of space laser communication[J]. Chinese Optics, 2012, 5(2):116-125.(in Chinese) doi: 10.3969/j.issn.2095-1531.2012.02.004 [2] 吴从均, 颜昌翔, 高志良.空间激光通信发展概述[J].中国光学, 2013, 6(5):670-680. http://www.chineseoptics.net.cn/CN/abstract/abstract9051.shtmlWU C J, YAN CH X, GAO ZH L. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5):670-680.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9051.shtml [3] 李一芒, 高世杰, 盛磊.近海激光通信分集技术对大气湍流扰动抑制的实验[J].红外与激光工程, 2016, 45(3):0322001. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201603040LI Y M, GAO SH J, SHENG L. Experiment of restraint of atmospheric turbulence using diversity technology based on analysis of offshore laser communication[J]. Infrared and Laser Engineering, 2016, 45(3):0322001.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201603040 [4] 王玉坤, 贾娜, 张锐.激光通信成像光斑处理方法研究[J].液晶与显示, 2017, 32(9):736-740. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201709010WANG Y K, JIA N, ZHANG R. Laser communication spots imaging process method[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(9):736-740.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201709010 [5] 车晓杰, 梁忠诚, 刘学明.室内MIMO可见光通信的接收特性[J].发光学报, 2016, 37(2):242-249. http://d.old.wanfangdata.com.cn/Periodical/fgxb201602019CHE X J, LIANG ZH CH, LIU X M. Receiving characteristics of indoor MIMO visible light communication[J]. Chinese Journal of Luminescence, 2016, 37(2):242-249.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201602019 [6] 林宏, 周朋超, 王菲菲, 等.用于光通信的高速响应有机电致发光器件[J].发光学报, 2013, 34(1):73-77. http://d.old.wanfangdata.com.cn/Periodical/fgxb201301013LIN H, ZHOU P CH, WANG F F, et al.. Fast-response organic light-emitting devices for optical communication[J]. Chinese Journal of Luminescence, 2013, 34(1):73-77.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201301013 [7] 陈牧, 柯熙政.大气湍流对激光通信系统性能的影响研究[J].红外与激光工程, 2016, 45(8):0822009. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201608018CHEN M, KE X ZH. Effect of atmospheric turbulence on the performance of laser communication system[J]. Infrared and Laser Engineering, 2016, 45(8):0822009.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201608018 [8] 柯熙政, 张宇.部分相干光在大气湍流中的光强闪烁效应[J].光学学报, 2015, 35(1):0106001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201501006KE X ZH, ZHANG Y. Scintillation of partially coherent beam in atmospheric turbulence[J]. Acta Optica Sinica, 2015, 35(1):0106001.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201501006 [9] 柯熙政, 薛瑶.大气湍流尺度对部分相干光传输特性的影响[J].光子学报, 2017, 46(1):0101002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzxb201701005KE X ZH, XUE Y. Effect on the partially coherent beam propagation properties in the atmospheric turbulence considering its scales[J]. Acta Photonica Sinica, 2017, 46(1):0101002.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzxb201701005 [10] CHEN CH Y, YANG H M, TONG SH F, et al.. Mean-square angle-of-arrival difference between two counter-propagating spherical waves in the presence of atmospheric turbulence[J]. Optics Express, 2015, 23(19):24657-24668. doi: 10.1364/OE.23.024657 [11] YAO H F, NI X L, CHEN CH Y, et al.. Performance of M-PAM FSO communication systems in atmospheric turbulence based on APD detector[J]. Optics Express, 2018, 26(18):23819-23830. doi: 10.1364/OE.26.023819 [12] 姚海峰, 倪小龙, 陈纯毅, 等.基于脉冲激光在大气中传输的信道补偿[J].光学学报, 2018, 38(1):0101003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201801003YAO H F, NI X L, CHEN CH Y, et al.. Channel compensation based on pulse laser propagating in atmosphere[J]. Acta Optica Sinica, 2018, 38(1):0101003.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201801003 [13] 刘超, 陈善球, 廖周, 等.自适应光学技术在通信波段对大气湍流的校正[J].光学 精密工程, 2014, 22(10):2605-2610. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201410004LIU CH, CHEN SH Q, LIAO ZH, et al.. Correction of atmospheric turbulence by adaptive optics in waveband of free-space coherent laser communication[J]. Opt. Precision Eng., 2014, 22(10):2605-2610.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201410004 [14] 赵海丽, 姜会林, 王晓曼, 等.空间光通信中高帧频相机动态调光技术研究[J].液晶与显示, 2012, 27(2):267-270. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201202025ZHAO H L, JIANG H L, WANG X M, et al.. Dynamic light-adjusting technology of high frame frequency CCD camera in space optical communication system[J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(2):267-270.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201202025 [15] CHEN CH Y, YANG H M. Correlation between light-flux fluctuations of two counter-propagating waves in weak atmospheric turbulence[J]. Optics Express, 2017, 25(11):12779-12795. doi: 10.1364/OE.25.012779 [16] CHEN CH Y, YANG H M. Shared secret key generation from signal fading in a turbulent optical wireless channel using common-transverse-spatial-mode coupling[J]. Optics Express, 2018, 26(13):16422-16441. doi: 10.1364/OE.26.016422 [17] MINET J, VORONTSOV M A, POLNAU E, et al.. Enhanced correlation of received power-signal fluctuations in bidirectional optical links[J]. Journal of Optics, 2013, 15(2):022401. doi: 10.1088/2040-8978/15/2/022401 [18] PARENTI P R, ROTH J M, SHAPIRO J H, et al.. Experimental observations of channel reciprocity in single-mode free-space optical links[J]. Optics Express, 2012, 20(19):21635-21644. doi: 10.1364/OE.20.021635 [19] GIGGENBACH D, COWLEY W, GRANT K, et al.. Experimental verification of the limits of optical channel intensity reciprocity[J]. Applied Optics, 2012, 51(16):3145-3152. doi: 10.1364/AO.51.003145 [20] 陈纯毅, 倪小龙, 刘智, 等.大气光传输信道的闪烁与脉冲畸变测量研究[J].光学 精密工程, 2016, 24(10):330-337. http://www.eope.net/EN/Y2016/V24/I10s/330CHEN CH Y, NI X L, LIU ZH, et al.. Research on scintillation and pulse distortion measurement of atmospheric optical transmission channel[J]. Opt. Precision Eng., 2016, 24(10):330-337.(in Chinese) http://www.eope.net/EN/Y2016/V24/I10s/330