Investigation on the performance of a homemade thulium-doped fiber laser oscillator
-
摘要: 目前,掺铥光纤激光器(TDFL)所使用的材料和器件,特别是增益光纤,多为外国公司所生产,因而,有必要开展基于国产材料和器件的该类激光器研究。本文报道了基于自研增益光纤建立的连续波掺铥光纤激光振荡器的性能。实验中,利用纤芯直径为10 μm的自研掺铥光纤、国产泵浦源及光纤光栅搭建了三台振荡器,分别产生了中心波长为1 918、1 941和2 013 nm的激光输出。此外,对国产与进口增益光纤的激光输出特性进行了比较。实验结果表明,与进口光纤相比,自研掺铥光纤在输出效率方面低6%~11%,但是光谱线宽保持良好(0.1 nm左右),且在近场光斑分布方面具有一定优势。
-
关键词:
- 掺铥光纤激光振荡器 /
- 国产化光纤材料与器件
Abstract: The optical fibers and devices used in thulium-doped fiber lasers(TDFL) are mostly produced by foreign companies. Therefore, it is necessary to develop TDFL based on homemade materials and devices. In this paper, the performance of continuous-wave thulium-doped fiber oscillators using a homemade gain fiber is reported. During the experiment, using a domestic thulium-doped fiber with a core diameter of 10 μm, homemade LD(laser diode) pump sources and fiber gratings, three oscillators were developed to generate laser output with central wavelengths of 1 918 nm, 1 941 nm and 2 013 nm, respectively. In addition, the laser output characteristics of the homemade and imported thulium-doped gain fibers were compared. The experimental results indicate that the output efficiency of the homemade thulium-doped fiber(TDF) is 6-11% lower than the imported TDF, but the homemade TDF has a similar spectral linewidth(about 0.1 nm) and a better near-field spot. -
图 5 国产化掺铥光纤激光振荡器输出功率和光谱实验结果。(a)信号光功率与泵浦功率的关系;(b)~(d)1 918 nm、1 941 nm和2 013 nm振荡器的光谱
Figure 5. Experimental results of output power and spectra of the domestic thulium-doped fiber laser oscillators. (a)Relationship between signal power and pump power; (b)~(d)spectra of 1 918 nm, 1 941 nm and 2 013 nm oscillators
表 1 光纤布拉格光栅参数表
Table 1. Parameters of the FBGs
1 λc①=1 917.78 nm, λc=1 917.81 nm, Δλ②=1.2 nm, Δλ=0.08 nm, R③>99% R≈10% 2 λc=1 941.42 nm, λc=1 941.67nm, Δλ=1.1 nm, Δλ=0.11 nm, R>99% R≈30% 3 λc=2 013.34 nm, λc=2 013.34 nm, Δλ=0.84 nm, Δλ=0.16 nm, R>99% R≈11% Notes:①λc is the central wavelength; ②Δλ is the linewidth; ③R is the reflectivity. 表 2 采用进口和国产掺铥光纤的激光振荡器的输出效率和光谱特性
Table 2. Output efficiencies and spectral characteristics of the laser oscillators by using the domestic and imported TDFs
光纤 中心波长/nm 输出功率/W 泵浦功率/W 斜率效率/% 光-光转化效率/% 线宽/nm 进口 1 918.00 2.92 10.52 34.6 27.7 0.09 国产 1 917.80 2.38 10.52 28.0 22.6 0.08 进口 1 941.72 3.96 10.88 43.1 36.3 0.10 国产 1 941.75 2.95 10.88 31.8 27.1 0.09 进口 2 013.33 3.50 10.40 37.0 33.7 0.09 国产 2 013.38 2.92 10.40 29.1 28.0 0.10 -
[1] SCHOLLE K, LAMRINI S, KOOPMANN P, et al.. 2μm Laser Sources and Their Possible Applications[M]. PAL B. Frontiers in Guided Wave Optics and Optoelectronics.Vukovar, Croatia: InTech, 2010. [2] 顾宏灿, 黄俊斌, 程玲, 等.20~1250 Hz光纤激光加速度传感系统设计[J].中国光学, 2017, 10(4):469-476. http://www.chineseoptics.net.cn/CN/abstract/abstract9512.shtmlGU H C, HUANG J B, CHENG L, et al.. 20-1250 Hz fiber laser acceleration sensing system[J]. Chinese Optics, 2017, 10(4):469-476.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9512.shtml [3] 张姝, 何芳, 孙伟丽, 等.应用2μm铥(Tm)激光器行前列腺手术的护理[J].全科护理, 2012, 10(36):3401-3403. doi: 10.3969/j.issn.1674-4748.2012.36.027ZHANG SH, HE F, SUN W L, et al.. Nursing care of prostate surgery using 2μm thulium laser[J]. Chinese General Practice Nursing, 2012, 10(36):3401-3403.(in Chinese) doi: 10.3969/j.issn.1674-4748.2012.36.027 [4] 李充, 谢冀江, 潘其坤, 等.中红外光学参量振荡器技术进展[J].中国光学, 2016, 9(6):615-624. http://www.chineseoptics.net.cn/CN/abstract/abstract9438.shtmlLI CH, XIE J J, PAN Q K, et al.. Progress of mid-infrared optical parametric oscillator[J]. Chinese Optics, 2016, 9(6):615-624.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9438.shtml [5] WU J F, YAO ZH D, ZONG J, et al.. Highly efficient high-power thulium-doped germanate glass fiber laser[J]. Optics Letters, 2007, 32(6):638-640. doi: 10.1364/OL.32.000638 [6] 刘茵紫, 邢颍滨, 徐中巍, 等.高功率掺铥石英光纤激光器研究进展[J].激光与光电子学进展, 2018, 55(5):050004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201805003LIU Y Z, XING Y B, XU ZH W, et al.. Research progress in high power Tm3+-doped silica fiber lasers[J]. Laser & Optoelectronics Progress, 2018, 55(5):050004.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201805003 [7] 顾友.稀土元素铥及其应用[J].稀土信息, 2006(1):20-21. http://d.old.wanfangdata.com.cn/Periodical/xtxx200601015GU Y. Thulium and its applications[J]. Rare Earth Information, 2006(1):20-21.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xtxx200601015 [8] SNITZER E. Optical master action of Nd3+ in a barium crown glass[J]. Physical Review Letters, 1961, 7(12):444-446. doi: 10.1103/PhysRevLett.7.444 [9] KAO K C, HOCKHAM G A. Dielectric Fibre Surface Waveguide for Optical Frequencies[M]. BROWN J. Electromagnetic Wave Theory. Amsterdam: Elsevier, 1967: 441-444. [10] KAPRON F P, KECK D B, MAURER R D. Radiation losses in glass optical waveguides[J]. Applied Physics Letters, 1970, 17(10):423-425. doi: 10.1063/1.1653255 [11] POOLE S B, PAYNE D N, FERMANN M E. Fabrication of low-loss optical fibres containing rare-earth ions[J]. Electronics Letters, 1985, 21(17):737-738. doi: 10.1049/el:19850520 [12] SNITZER E, PO H, HAKIMI F, et al.. Double clad, offset core Nd fiber laser[C]. Proceedings of the Optical Fiber Sensors, OSA, 1988. [13] HILL K O, FUJⅡ Y, JOHNSON D C, et al.. Photosensitivity in optical fiber waveguides:application to reflection filter fabrication[J]. Applied Physics Letters, 1978, 32(10):647-649. doi: 10.1063/1.89881 [14] MELTZ G, MOREY W W, GLENN W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 1989, 14(15):823-825. doi: 10.1364/OL.14.000823 [15] BOCK W J, WOLINSKI T R, BARWICZ A. Development of a polarimetric optical fiber sensor for electronic measurement of high pressure[J]. IEEE Transactions on Instrumentation and Measurement, 1990, 39(5):715-721. doi: 10.1109/19.58613 [16] PEYRILLOUX A, HARTIER T, HIDEUR A, et al.. Theoretical and experimental study of the birefringence of a photonic crystal fiber[J]. Journal of Lightwave Technology, 2003, 21(2):536-539. doi: 10.1109/JLT.2003.808793 [17] GOODNO G D, BOOK L D, ROTHENBERG J E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier[J]. Optics Letters, 2009, 34(8):1204-1206. doi: 10.1364/OL.34.001204 [18] EHRENREICH T, LEVEILLE R, MAJID I, et al.. 1-kW, all-glass Tm:fiber laser[J]. Proceedings of SPIE, 2010, 7580:758016. doi: 10.1117/12.842404 [19] JACKSON S D, KING T A. Theoretical modeling of Tm-doped silica fiber lasers[J]. Journal of Lightwave Technology, 1999, 17(5):948-956. doi: 10.1109/50.762916