留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实用化平面超振荡透镜的研究进展

李文丽 虞益挺

李文丽, 虞益挺. 实用化平面超振荡透镜的研究进展[J]. 中国光学, 2019, 12(6): 1155-1178. doi: 10.3788/CO.20191206.1155
引用本文: 李文丽, 虞益挺. 实用化平面超振荡透镜的研究进展[J]. 中国光学, 2019, 12(6): 1155-1178. doi: 10.3788/CO.20191206.1155
LI Wen-li, YU Yi-ting. Research progresses of planar super-oscillatory lenses for practical applications[J]. Chinese Optics, 2019, 12(6): 1155-1178. doi: 10.3788/CO.20191206.1155
Citation: LI Wen-li, YU Yi-ting. Research progresses of planar super-oscillatory lenses for practical applications[J]. Chinese Optics, 2019, 12(6): 1155-1178. doi: 10.3788/CO.20191206.1155

实用化平面超振荡透镜的研究进展

doi: 10.3788/CO.20191206.1155
基金项目: 

国家自然科学基金优青项目 51622509

装备预研航天科技联合基金项目 6141B06240205

详细信息
    作者简介:

    李文丽(1989—), 陕西宝鸡人, 博士研究生, 2012年、2015年于西安理工大学分别获得学士、硕士学位, 2015年9月至今在西北工业大学微机电系统及纳米技术专业博士在读, 主要从事平面超分辨透镜的优化设计及制备方面的研究。E-mail:Wenlili_nwpu@163.com

    虞益挺(1980—), 浙江宁波人, 教授, 博士生导师, 2003年于西北工业大学获得学士学位, 2010年于西北工业大学获得博士学位, 主要从事微纳光学成像与传感方面的研究。E-mail:yyt@nwpu.edu.cn

  • 中图分类号: O436.1;O441.4

Research progresses of planar super-oscillatory lenses for practical applications

Funds: 

National Natural Science Foundation of China 51622509

the Joint Fund for the Equipment Pre-research of Space Science and Technology 6141B06240205

More Information
  • 摘要: 传统光学系统由于受到衍射极限的制约,难以实现远场超分辨聚焦与成像。基于超振荡原理的平面超透镜为这一难题提供了可能的解决途径,其在传播过程中可不依赖倏逝波而实现远场超分辨聚焦。利用对各个衍射单元之间的衍射干涉效应进行精确调控,可在焦平面上局部区域内获得高于系统最高空间频率的电场振荡,从而实现对衍射焦点区域横向和轴向尺寸的可控调节。与传统光学透镜相比,平面超振荡透镜具有光场可控性强、设计自由度大、便于集成等优点,同时借助其远场超衍射极限的光场调控能力,受到衍射光学和微纳光学等领域研究人员的广泛关注。本文主要从实际应用的角度出发,对平面超振荡透镜的研究现状及其应用场景进行了分析和讨论,最后对该类透镜目前面临的问题及对应的解决办法进行了阐述。
  • 图  1  超振荡聚焦产生机理(a)[36]及超衍射极限聚焦判据(b)[39]

    Figure  1.  The mechanism of super-oscillation focusing(a)[36] and the focusing criteria of super-diffraction limit(b)[39]

    图  2  平面超振荡透镜光针聚焦性能优化结果[49]

    Figure  2.  The optimized results of focusing performance of needle-like SOLs[49]

    图  3  多焦点平面超振荡透镜聚焦性能优化结果[55]

    Figure  3.  The optimized results of focusing performance of planar multifocal SOLs[55]

    图  4  平面超振荡透镜的普遍色散规律[60]

    Figure  4.  The common dispersive rules of planar SOLs[60]

    图  5  色散定制的平面超振荡透镜[60]. (a)消色差超振荡透镜的优化设计结果:λB=405 nm, λG=532 nm, λR=640 nm;(b)实验表征结果:λB=405 nm, λG=532 nm, λR=640 nm;(c)焦平面实验表征结果:λB=405 nm, λG=532 nm, λR=640 nm;(d)半高宽曲线实验仿真对比:λB=405 nm, λG=532 nm, λR=640 nm[60]

    Figure  5.  The achromatic-customized planar SOLs[60]. (a)The optimized results of λB=405 nm, λG=532 nm, λR=640 nm; (b)experimental results of λB=405 nm, λG=532 nm, λR=640 nm; (c)experimentally registered intensity patterns in the transverse focal plane for λB=405 nm, for λG=532 nm, for λR=640 nm; (d)comparison of experimental and simulation results of the full width at half maximum(FWHM) for λB=405 nm, λG=532 nm and λR=640 nm[60]

    图  6  (a) 二元振幅型平面超振荡透镜的电镜图;(b)计算焦平面电场分布;(c)实测焦平面电场分布;(d)金属薄膜上制备的纳米孔;(e)传统透镜未能分辨的纳米孔图像;(f)经超振荡透镜分辨的纳米孔图像[38]

    Figure  6.  (a)Scanning electron microscope(SEM) image of the binary amplitude type planar SOLs; (b)electric field distribution of calculated focal plane of the SOLs; (c)electric field distribution of actual focal plane; (d)SEM image of a cluster of nanoholes in a metal film; (e)image of the cluster is not resolved with a conventional lens; (f)image of the cluster resolved by super-oscillatory lenses[38]

    图  7  单光子的量子超振荡。(a)观察杨氏双缝实验中的量子干涉现象;(b)一维超振荡透镜中的量子振荡效应;(c)一维超振荡透镜的电镜图[71]

    Figure  7.  Quantum super-oscillation of single photon. (a)Observation of quantum interference in the Young double-slit experiment; (b)quantum super-oscillations of one-dimensional SOLs; (c)electron micrograph of the mask[71]

    图  8  二元振幅型超临界透镜。(a)405 nm超临界透镜构型;(b)聚焦强度分布实验结果与仿真结果对比;(c)轴向电场强度实验表征结果[40]

    Figure  8.  The binary amplitude-type supercritical lens. (a)Configuration of the 405 nm supercritical lens; (b)comparison of the focusing intensity distributions between the simulated and experimental results; (c)axial measured intensity profile along the propagation distance[40]

    图  9  二硒化钨材料制成的振幅型平面超振荡透镜。(a)单层二硒化钨透镜的飞秒激光加工过程;(b)单层二硒化钨晶体的吸收和光致发光谱;(c)制备的单层二硒化钨透镜的反射图;(d)所制备透镜的共焦拉曼图;(e)制备的二硒化钨透镜的原子力显微镜图;(f)入射光功率与线宽的函数关系[78]

    Figure  9.  The amplitude-type SOL made from WSe2. (a)Schematic view of the femtosecond laser fabrication process of monolayer WSe2 lens; (b)absorption and photoluminescence spectra of the monolayer WSe2 crystal; (c)reflective optical microscopic image of a fabricated monolayer WSe2 lens; (d)confocal Raman microscopic intensity imaging of a fabricated monolayer WSe2 lens; (e)atomic force microscope(AFM) image of a fabricated monolayer WSe2 lens; (f)line width as a function of the incident laser power[78]

    图  10  超声超振荡透镜。(a)传统菲涅尔透镜的声场强度数值计算结果;(b)优化设计的超振荡声学透镜声场强度分布;(c)实验测试的菲涅尔透镜声场强度分布;(d)实验测试的超振荡透镜声场强度分布;(e)制备的超振荡声学透镜[80]

    Figure  10.  The ultrasonic SOLs. (a, b)Numerically calculated acoustic intensity fields by the conventional Fresnel zone plate (FZP) lens (left panel, a) and the optimized super-oscillatory acoustic lens (SOAL), (right panel, b); (c, d)experimentally measured acoustic intensity field radiated by the conventional FZP lens (left panel, c) and the optimized SOAL (right panel, d); (e)fabricated optimized SOAL with a single layer[80]

    图  11  太赫兹波段的超振荡透镜。(a)六边形单元几何参数;晶胞单元的透射系数归一化的强度(b)和相位(c)分布;透镜的整体效果(d)及局部放大效果图(e);(f,g)晶胞单元的奇数偶数区域;(h)所设计的圆柱透镜的晶胞单元分布[81]

    Figure  11.  The SOLs at the Terahertz wavelengths. (a) Hexagonal unit cell proposed along with its geometrical parameters; (b)normalized magnitude and (c)phase (in radians) maps of the transmission coefficient of the unit cell as a function of the parameter α and frequency; (d)full metalens schematic and (e) zoomed view of the metalens central zones; (f, g)unit cells of the even and odd zones, respectively; (h)unit cell distribution of the designed cylindrical lens[81]

    图  12  利用焦深重叠办法实现的消色差超振荡透镜。(a)消色差超振荡透镜在3个波长处聚焦,红(λR=633 nm),绿(λG=532 nm),蓝(λB=405 nm);(b)制备的超振荡透镜的电镜图;透镜在xz面的电场强度分布(c)仿真及(d)实验表征结果;(e)横向焦平面的电场强度图(从上至下分别为对应λBλGλR及3个波长合成的结果)[82]

    Figure  12.  The achromatic SOLs achieved through the focal depths overlapped. (a)Apochromatic SOL focuses simultaneously at three different wavelengths, red(λR=633 nm), green(λG=532 nm), and blue(λB=405 nm); (b)SEM micrograph of the fabricated mask with diameter of 40 μm, and working distance of 10 μm; simulated (c) and experimental (d) diffraction patterns in the xz cross-section; (e)experimentally registered intensity patterns in the transverse focal plane(from top to bottom are for λB, λG, λR, and for RGB wavelengths by simultaneously switching on the three channels)[82]

    图  13  基于P-B相位的连续宽波段超振荡超透镜。(a)实验装置图;(b)制备的超表面结构;(c)衍射受限的直径为20 μm的纳米孔成像效果;(d)直径为20 μm的纳米孔超振荡成像效果[83]

    Figure  13.  Continuous broadband SOLs based on P-B phase. (a)Schematic of experimental setup; (b)proposed metasurface; (c)diffraction-limited image of a hole with a diameter of 20 μm; (d)superoscillatory image of a hole with a diameter of 20 μm[83]

    图  14  通过优化方法直接设计的消色差超振荡透镜.(a)消色差超振荡透镜的优化设计结果:λB=405 nm, λG=532 nm, λR=640 nm;(b)实验表征结果:λB=405 nm, λG=532 nm, λR=640 nm;(c)焦平面实验表征结果:λB=405 nm, λG=532 nm, λR=640 nm及三通道拟合结果;(d)半高宽曲线实验仿真对比:λB=405 nm, λG=532 nm, λR=640 nm[60]

    Figure  14.  The achromatic SOLs designed by optimization. (a)The optimized results of λB=405 nm, λG=532 nm, λR=640 nm; (b)the experimental results of λB=405 nm, λG=532 nm, λR=640 nm; (c)experimentally registered intensity patterns in the transverse focal plane for λB=405 nm, for λG=532 nm, for λR=640 nm, and for RGB wavelengths by simultaneously switching on the three channels; (d)comparison of experimental and simulation results of the full width at half maximum(FWHM) for λB=405 nm, λG=532 nm and λR=640 nm[60]

    图  15  五波长消色差超振荡透镜。(a)消色差超振荡透镜相位分布;XZ面电场分布(b)λ1=405 nm;(c)λ2=450 nm, (d)λ3=485 nm;(e)λ4=532 nm; (f)λ5=640 nm

    Figure  15.  Achromatic SOLs for five wavelengths. (a)The phase distribution of the achromatic SOLs; the electric field contours in the XZ cross-section at (b)λ1=405 nm; (c)λ2=450 nm; (d)λ3=485 nm; (e)λ4=532 nm; and (f)λ5=640 nm

    图  16  复合菲涅尔多层消色差透镜。(a)透镜的艺术效果图;(b)多层结构的说明图;(c~e)单层透镜的暗场图,不同元素根据红,绿,蓝3个颜色设计的;(f)三层透镜的明场透射图;(g)白光照明的光谱图及焦点强度分布[84]

    Figure  16.  Composite multilayered achromatic Fresnel lens. (a)Artist′s view of the three-layer lens; (b)schematic illustration of the layered structure; (c~e)dark-field images of the single-layer lens elements. The different elements are designed to focus red, green or blue to 1 mm focal distance along the optical axis(scale bar, 35 mm); (f)bright-field transmission image of the three-layer lens; (g)spectrum taken under white light illumination at the focal spot, revealing the RGB components[84]

    图  17  多层无串扰消色差超透镜。(a)加工工艺步骤流程图;(b)旋涂PDMS之前的硅纳米柱的扫描电镜图;(c)定位双层透镜的光学显微镜图像;(d)双层结构定位用对准标记显微图像;(e)两种波长下,当定位误差δ分别为1、3、6 μm时的仿真轴向强度图[85]

    Figure  17.  Non-crosstalk multilayered achromatic SOL. (a)Schematic of the fabrication steps; (b)SEM of Si nanoposts before polydimethylsiloxane (PDMS) spin coating; (c)optical microscope image of the aligned metalens doublet; (d)optical microscope (20× objective) image of the alignment marks from the two layers along with a schematic of cross section; (e)simulated axial intensity profiles of the metalens doublet with the misalignment δ of 1, 3 and 6 μm at the two wavelengths[85]

    图  18  平面超振荡透镜加工工艺发展过程[60]

    Figure  18.  Development process of the fabrication process on planar SOLs[60]

    图  19  平面超振荡透镜圆片级制备工艺[60]

    Figure  19.  Wafer-level fabrication process of planar SOLs[60]

    图  20  圆片级平面超振荡透镜加工结果[60]

    Figure  20.  Fabrication results of wafer-level planar SOLs[60]

    图  21  利用平面超振荡透镜对变高度物体三维成像结果。(a)由矩形孔阵列形成的三维渔网结构草图;(b)渔网结构的扫描电镜图;(c~e)通过透射模式显微镜,激光扫描共聚焦显微镜及超振荡显微镜分别对三维渔网结构的成像效果图[40]

    Figure  21.  Three-dimentional imaging of the varying height object through planar SOLs. (a)Sketch of a 3D fishnet wedge composed of etched array of rectangular holes; (b)top-view (x-y plane) SEM image of the fishnet wedge. (c~e)the imaging results of this wedge by transmission mode microscopy(T-mode), laser scanning confocal microscopy (LSCM), and SCL microscopy[40]

    图  22  平面超振荡透镜高密度数据存储。(a)利用超振荡透镜光针实现热辅助磁记录的工作原理;二元光针超振荡透镜分别在(b)空气,(c)SiO2,(d)GaP介质中的径向透过率分布[97];(e)身份识别系统概念说明图[98]

    Figure  22.  High density data storage based on SOLs. (a)Working principle of heat assisted magnetic recording(HAMR) realized by optical needle SOL, the radial transmittance distribution of the binary optical needle SOL mask design for air, SiO2 and GaP is given in (b), (c) and (d) respectively[97]. The transparent areas are white while the opaque areas are black; (e)illustration for identity verification[98]

    图  23  基于超振荡透镜的反斯托克斯成像。(a)用于振动成像的超临界聚焦相干反斯托克斯拉曼散射显微平台示意图;(b)牙齿在XY平面上的相干反斯托克斯图像[99]

    Figure  23.  Anti-stokes imaging based on SOLs. (a)Schematic diagram of the supercritical focusing coherent anti-Stokes Raman scattering(SCF-CARS) microscopy platform for vibrational imaging; (b)CARS image of the tooth in x-y plane[99]

  • [1] YAN B, WANG Z B, PARKER A L, et al.. Superlensing microscope objective lens[J]. Applied Optics, 2017, 56(11):3142-3147. doi: 10.1364/AO.56.003142
    [2] SRITURAVANICH W, PAN L, WANG Y, et al.. Flying plasmonic lens in the near field for high-speed nanolithography[J]. Nature Nanotechnology, 2008, 3(12):733-737. doi: 10.1038/nnano.2008.303
    [3] NI X J, ISHII S, KILDISHEV A V, et al.. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light:Science & Applications, 2013, 2(4):e72.
    [4] HU J T, LIU CH H, REN X CH, et al.. Plasmonic lattice lenses for multiwavelength achromatic focusing[J]. ACS Nano, 2016, 10(11):10275-10282. doi: 10.1021/acsnano.6b05855
    [5] WILLIAMS C, MONTELONGO Y, WILKINSON T D. Plasmonic metalens for narrowband dual-focus imaging[J]. Advanced Optical Materials, 2017, 5(24):1700811. doi: 10.1002/adom.201700811
    [6] ABBE E. A contribution to the theory of the microscope and the nature of microscopic vision[C]. Proceedings of Bristol Naturalists' Society, Williams & Northgate, 1874: 200-261.
    [7] LORD RAYLEIGH F R S. XII. On the manufacture and theory of diffraction-gratings[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1874, 47(310):81-93. doi: 10.1080/14786447408640996
    [8] LI L, GUO W, YAN Y ZH, et al.. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light:Science & Applications, 2013, 2(9):e104. http://cn.bing.com/academic/profile?id=da2755c7a3a9ac952a47ba2b689ccf87&encoded=0&v=paper_preview&mkt=zh-cn
    [9] XU J Q, TEHRANI K F, KNER P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy[J]. ACS Nano, 2015, 9(3):2917-2925. doi: 10.1021/nn506952g
    [10] YUE F Y, ZHANG CH M, ZANG X F, et al.. High-resolution grayscale image hidden in a laser beam[J]. Light:Science & Applications, 2018, 7:17129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201801009
    [11] ZHU X L, YAN W, LEVY U, et al.. Resonant laser printing of structural colors on high-index dielectric metasurfaces[J]. Science Advances, 2017, 3(5):e1602487. doi: 10.1126/sciadv.1602487
    [12] NOBUKAWA T, NOMURA T. Multilayer recording holographic data storage using a varifocal lens generated with a kinoform[J]. Optics Letters, 2015, 40(23):5419-5422. doi: 10.1364/OL.40.005419
    [13] RAOUX S, WEłNIC W, IELMINI D. Phase change materials and their application to nonvolatile memories[J]. Chemical Reviews, 2010, 110(1):240-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cfdec7b60ec1ecc289ccb63ec9ec4cd
    [14] SUN J B, LITCHINITSER N M. Toward practical, subwavelength, visible-light photolithography with hyperlens[J]. ACS Nano, 2018, 12(1):542-548. doi: 10.1021/acsnano.7b07185
    [15] WANG R, WEI J S, FAN Y T. Chalcogenide phase-change thin films used as grayscale photolithography materials[J]. Optics Express, 2014, 22(5):4973-4984. doi: 10.1364/OE.22.004973
    [16] LUBECK E, CAI L. Single-cell systems biology by super-resolution imaging and combinatorial labeling[J]. Nature Methods, 2012, 9(7):743-748. doi: 10.1038/nmeth.2069
    [17] NÄGERL U V, SIBARITA J B. Special section guest editorial:super-resolution microscopy of neural structure and function[J]. Neurophotonics, 2016, 3(4):041801. doi: 10.1117/1.NPh.3.4.041801
    [18] KHORASANINEJAD M, CHEN W T, ZHU A Y, et al.. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7):4595-4600. doi: 10.1021/acs.nanolett.6b01897
    [19] ZHANG X T, YAN L SH, GUO Y H, et al.. Enhanced far-field focusing by plasmonic lens under radially polarized beam illumination[J]. Plasmonics, 2016, 11(1):109-115. doi: 10.1007/s11468-015-0029-9
    [20] SPEKTOR G, DAVID A, GJONAJ B, et al.. Metafocusing by a metaspiral plasmonic lens[J]. Nano Letters, 2015, 15(9):5739-5743. doi: 10.1021/acs.nanolett.5b01571
    [21] SHALAEV V M. Optical negative-index metamaterials[J]. Nature Photonics, 2007, 1(1):41-48. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221150596/
    [22] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969. doi: 10.1103/PhysRevLett.85.3966
    [23] LIU ZH W, LEE H, XIONG Y, et al.. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819):1686. doi: 10.1126/science.1137368
    [24] LIU ZH W, STEELE J M, SRITURAVANICH W, et al.. Focusing surface plasmons with a plasmonic lens[J]. Nano Letters, 2005, 5(9):1726-1729. doi: 10.1021/nl051013j
    [25] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al.. Metalenses at visible wavelengths:Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194. doi: 10.1126/science.aaf6644
    [26] ARBABI E, ARBABI A, KAMALI S M, et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1):812. doi: 10.1038/s41467-018-03155-6
    [27] ARBABI A, HORIE Y, BAGHERI M, et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11):937-943. doi: 10.1038/nnano.2015.186
    [28] SUN H, ZHU Y CH, GAO B, et al.. Polarization-dependent quasi-far-field superfocusing strategy of nanoring-based plasmonic lenses[J]. Nanoscale Research Letters, 2017, 12(1):386. doi: 10.1186/s11671-017-2154-1
    [29] FERNANDEZ-DOMINGUEZ A I, LIU ZH W, PENDRY J B. Coherent four-fold super-resolution imaging with composite photonic plasmonic structured illumination[J]. ACS Photonics, 2015, 2(3):341-348. doi: 10.1021/ph500342g
    [30] ELEFTHERIADES G V, MARKLEY L, WONG A M H. Sub-wavelength focusing and imaging using shifted-beam and super-oscillation antenna arrays[C]. Proceedings of 201215th International Symposium on Antenna Technology and Applied Electromagnetics, IEEE, 2012.
    [31] WEN ZH Q, HE Y H, LI Y Y, et al.. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Optics Express, 2014, 22(18):22163-22171. doi: 10.1364/OE.22.022163
    [32] ROGERS E T F, SAVO S, LINDBERG J, et al.. Super-oscillatory optical needle[J]. Applied Physics Letters, 2013, 102(3):031108. doi: 10.1063/1.4774385
    [33] LIU T, TAN J B, LIU J, et al.. Vectorial design of super-oscillatory lens[J]. Optics Express, 2013, 21(13):15090-15101. doi: 10.1364/OE.21.015090
    [34] YUAN G H, ROGERS E T F, ZHELUDEV N I. Tailoring optical super-oscillations with metasurfaces[C]. Proceedings of 2016 Conference on Lasers and Electro-Optics, IEEE, 2016.
    [35] BERRY M V, POPESCU S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A:Mathematical and General, 2006, 39(22):6965-6977. doi: 10.1088/0305-4470/39/22/011
    [36] HUANG F M, CHEN Y F, DE ABAJO F J G, et al.. Optical super-resolution through super-oscillations[J]. Journal of Optics A:Pure and Applied Optics, 2007, 9(9):S285-S288. doi: 10.1088/1464-4258/9/9/S01
    [37] HUANG F M, ZHELUDEV N I. Super-resolution without evanescent waves[J]. Nano Letters, 2009, 9(3):1249-1254. doi: 10.1021/nl9002014
    [38] ROGERS E T F, LINDBERG J, ROY T, et al.. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5):432-435. doi: 10.1038/nmat3280
    [39] HUANG K, YE H P, TENG J H, et al.. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1):152-157.
    [40] QIN F, HUANG K, WU J F, et al.. A supercritical lens optical label-free microscopy:sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 2017, 29(8):1602721. doi: 10.1002/adma.201602721
    [41] POON T C. Digital Holography and Three-dimensional Display:Principles and Applications[M]. Boston:Springer, 2006.
    [42] POON T C, MOTAMEDI M. Optical/digital incoherent image processing for extended depth of field[J]. Applied Optics, 1987, 26(21):4612-4615. doi: 10.1364/AO.26.004612
    [43] YUAN G H, ROGERS E T F, ROY T, et al.. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports, 2014, 4:6333.
    [44] QIN F, HUANG K, WU J F, et al.. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5:9977. doi: 10.1038/srep09977
    [45] LIU T, WANG T, YANG SH M, et al.. Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces[J]. Optics Communications, 2016, 372:118-122. doi: 10.1016/j.optcom.2016.04.022
    [46] CHEN G, WU ZH X, YU A P, et al.. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Scientific Reports, 2017, 7(1):4697. doi: 10.1038/s41598-017-05060-2
    [47] ZHANG Y H, ZHONG W H, LIU D M, et al.. Creation of sub-diffraction optical needle by nonlinear super-oscillatory lens[C]. Proceedings of 2016 Conference on Lasers and Electro-optics, IEEE, 2016.
    [48] ROY T, ROGERS E T F, YUAN G H, et al.. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters, 2014, 104(23):231109. doi: 10.1063/1.4882246
    [49] DIAO J SH, YUAN W ZH, YU Y T, et al.. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Optics Express, 2016, 24(3):1924-1933. doi: 10.1364/OE.24.001924
    [50] BERRY M V. A note on superoscillations associated with Bessel beams[J]. Journal of Optics, 2013, 15(4):044006. doi: 10.1088/2040-8978/15/4/044006
    [51] CHEN W T, HORASANINEJAD M, ZHU A Y, et al.. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light:Science & Applications, 2017, 6(5):e16259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201702023
    [52] YU W T, JI Z H, DONG D SH, et al.. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 2016, 10(1):147-152. http://cn.bing.com/academic/profile?id=bb1beab0c08b7de5e07a0e9ef8b9d4f0&encoded=0&v=paper_preview&mkt=zh-cn
    [53] BERTHELOT J, AĆIMOVIĆ S S, JUAN M L, et al.. Three-dimensional manipulation with scanning near-field optical nanotweezers[J]. Nature Nanotechnology, 2014, 9(4):295-299. doi: 10.1038/nnano.2014.24
    [54] GAO L, SHAO L, CHEN B CH, et al.. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy[J]. Nature Protocols, 2014, 9(5):1083-1101. doi: 10.1038/nprot.2014.087
    [55] LI M Y, LI W L, LI H Y, et al.. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci[J]. Scientific Reports, 2017, 7:1335. doi: 10.1038/s41598-017-01492-y
    [56] DE GRACIA P, DORRONSORO C, MARCOS S. Multiple zone multifocal phase designs[J]. Optics Letters, 2013, 38(18):3526-3529. doi: 10.1364/OL.38.003526
    [57] LALITHAMBIGAI K, ANBARASAN P M, RAJESH K B. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask[J]. Physica Scripta, 2014, 89(7):075501. doi: 10.1088/0031-8949/89/7/075501
    [58] VALLEY P, MATHINE D L, DODGE M R, et al.. Tunable-focus flat liquid-crystal diffractive lens[J]. Optics Letters, 2010, 35(3):336-338. doi: 10.1364/OL.35.000336
    [59] CHOE Y, KIM J W, SHUNG K K, et al.. Ultrasonic microparticle trapping by multi-foci Fresnel lens[C]. Proceedings of 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum, IEEE, 2011.
    [60] LI W L, YU Y T, YUAN W ZH. Flexible focusing pattern realization of centimeter-scale planar super-oscillatory lenses in parallel fabrication[J]. Nanoscale, 2019, 11(1):311-320. doi: 10.1039/C8NR07985D
    [61] ZHOU Y, CHEN R, MA Y G. Design of optical wavelength demultiplexer based on off-axis meta-lens[J]. Optics Letters, 2017, 42(22):4716-4719. doi: 10.1364/OL.42.004716
    [62] NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4:2807. doi: 10.1038/ncomms3807
    [63] CU-NGUYEN P H, GREWE A, FEBER P, et al.. An imaging spectrometer employing tunable hyperchromatic microlenses[J]. Light:Science & Applications, 2015, 5(4):e16058. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602010
    [64] ROGERS K S, BOURDAKOS K N, YUAN G H, et al.. Optimising superoscillatory spots for far-field super-resolution imaging[J]. Optics Express, 2018, 26(7):8095-8112. doi: 10.1364/OE.26.008095
    [65] WANG CH T, TANG D L, WANG Y Q, et al.. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Scientific Reports, 2015, 5:18485. doi: 10.1038/srep18485
    [66] HAO X, KUANG C F, WANG T T, et al.. Effects of polarization on the de-excitation dark focal spot in STED microscopy[J]. Journal of Optics, 2010, 12(11):115707. doi: 10.1088/2040-8978/12/11/115707
    [67] XUE Y, KUANG C F, LI SH, et al.. Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy[J]. Optics Express, 2012, 20(16):17653-17666. doi: 10.1364/OE.20.017653
    [68] SINGH B K, NAGAR H, ROICHMAN Y, et al.. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams[J]. Light:Science & Applications, 2017, 6(9):e17050. http://cn.bing.com/academic/profile?id=4286a3dc25b0a109451724114634f366&encoded=0&v=paper_preview&mkt=zh-cn
    [69] YE H P, WAN CH, HUANG K, et al.. Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light[J]. Optics Letters, 2014, 39(3):630-633. doi: 10.1364/OL.39.000630
    [70] YU A P, CHEN G, ZHANG ZH H, et al.. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6:38859. doi: 10.1038/srep38859
    [71] YUAN G H, VEZZOLI S, ALTUZARRA C, et al.. Quantum super-oscillation of a single photon[J]. Light:Science & Applications, 2016, 5(8):e16127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201603016
    [72] LIU T, SHEN T, YANG SH M, et al.. Subwavelength focusing by binary multi-annular plates:design theory and experiment[J]. Journal of Optics, 2015, 17(3):035610. doi: 10.1088/2040-8978/17/3/035610
    [73] CHEN G, WU ZH X, YU A P, et al.. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Scientific Reports, 2016, 6:37776. doi: 10.1038/srep37776
    [74] CHEN G, LI Y Y, YU A P, et al.. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Scientific Reports, 2016, 6:29068. doi: 10.1038/srep29068
    [75] HUANG K, QIN F, LIU H, et al.. Planar diffractive lenses:fundamentals, functionalities, and applications[J]. Advanced Materials, 2018, 30(26):1704556. doi: 10.1002/adma.201704556
    [76] BERESNA M, GECEVIČIUS M, KAZANSKY P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Optical Materials Express, 2011, 1(4):783-795. doi: 10.1364/OME.1.000783
    [77] YANG J, WANG ZH, WANG F, et al.. Atomically thin optical lenses and gratings[J]. Light:Science & Applications, 2016, 5(3):e16046. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602004
    [78] LIN H, XU Z Q, QIU CH W, et al.. Atomically thin optical lenses and gratings[J]. Light:Science & Applications, 2016, 5(3):e16046. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602004
    [79] LIU CH H, ZHENG J J, COLBURN S, et al.. Ultrathin van der Waals metalenses[J]. Nano Letters, 2018, 18(11):6961-6966. doi: 10.1021/acs.nanolett.8b02875
    [80] HYUN J, KIM Y T, DOH I, et al.. Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range[J]. Scientific Reports, 2018, 8(1):9131. doi: 10.1038/s41598-018-27312-5
    [81] LEGARIA S, PACHECO-PE A V, BERUETE M. Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes[J]. Photonics, 2018, 5(4):56. doi: 10.3390/photonics5040056
    [82] YUAN G H, ROGERS E T F, ZHELUDEV N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light:Science & Applications, 2017, 6(9):e17036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201703024
    [83] LI ZH, ZHANG T, WANG Y Q, et al.. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]. Laser & Photonics Reviews, 2018, 12(10):1800064. http://cn.bing.com/academic/profile?id=d07e5aa2f00ed7da4a6c6de470e0a382&encoded=0&v=paper_preview&mkt=zh-cn
    [84] AVAYU O, ALMEIDA E, PRIOR Y, et al.. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8:14992. doi: 10.1038/ncomms14992
    [85] ZHOU Y, KRAVCHENKO I I, WANG H, et al.. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Letters, 2018, 18(12):7529-7537. doi: 10.1021/acs.nanolett.8b03017
    [86] ZHAO W Q, QIU L R, FENG ZH D. Effect of fabrication errors on superresolution property of a pupil filter[J]. Optics Express, 2006, 14(16):7024-7036. doi: 10.1364/OE.14.007024
    [87] KOSMEIER S, MAZILU M, BAUMGARTL J, et al.. Enhanced two-point resolution using optical eigenmode optimized pupil functions[J]. Journal of Optics, 2011, 13(10):105707. doi: 10.1088/2040-8978/13/10/105707
    [88] LERMAN G M, YANAI A, LEVY U. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light[J]. Nano Letters, 2009, 9(5):2139-2143. doi: 10.1021/nl900694r
    [89] HUANG K, SHI P, CAO G W, et al.. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6):888-890. doi: 10.1364/OL.36.000888
    [90] LI X P, CAO Y Y, GU M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13):2510-2512. doi: 10.1364/OL.36.002510
    [91] YUAN G H, ROGERS E T F, ROY T, et al.. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution[J]. Optics Express, 2014, 22(6):6428-6437. doi: 10.1364/OE.22.006428
    [92] ROY T, ROGERS E T F, ZHELUDEV N I. Sub-wavelength focusing meta-lens[J]. Optics Express, 2013, 21(6):7577-7582. doi: 10.1364/OE.21.007577
    [93] YUAN G H, ROGERS E T F, ROY T, et al.. Plasmonic super-oscillations and sub-diffraction focusing[C]. Proceedings of 2014 CLEO, Optical Society of America, 2014: FTu2K.5.
    [94] HUANG K, LIU H, GARCIA-VIDAL F J, et al.. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6:7059. doi: 10.1038/ncomms8059
    [95] TANG D L, WANG CH T, ZHAO Z Y, et al.. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6):713-719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/lpor.201500182
    [96] NI H B, YUAN G H, SUN L D, et al.. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography[J]. RSC Advances, 2018, 8(36):20117-20123. doi: 10.1039/C8RA02644K
    [97] HAO CH L, NIE ZH Q, YE H P, et al.. Three-dimensional supercritical resolved light-induced magnetic holography[J]. Science Advances, 2017, 3(10):e1701398. doi: 10.1126/sciadv.1701398
    [98] GONG L, LIN J, HAO CH L, et al.. Supercritical focusing coherent anti-Stokes Raman scattering microscopy for high-resolution vibrational imaging[J]. Optics Letters, 2018, 43(22):5615-5618. doi: 10.1364/OL.43.005615
    [99] KHORASANINEJAD M, AIETA F, KANHAIYA P, et al.. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8):5358-5362. doi: 10.1021/acs.nanolett.5b01727
    [100] ARBABI E, ARBABI A, KAMALI S M, et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1):812. doi: 10.1038/s41467-018-03155-6
    [101] WANG SH M, WU P C, SU V C, et al.. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3):227-232. doi: 10.1038/s41565-017-0052-4
    [102] PANIAGUA-DOMINGUEZ R, YU Y F, KHAIDAROV E, et al.. A metalens with a near-unity numerical aperture[J]. Nano Letters, 2018, 8(3):2124-2132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c023e7de5ca32aaa7a07e33269383f59
    [103] CHEN W T, HU A Y, SANJEEV V, et al.. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3):220-226. doi: 10.1038/s41565-017-0034-6
  • 加载中
图(23)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  133
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-29
  • 修回日期:  2019-03-06
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回