留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体变焦镜头的研究进展

黄翔 林四英 谷丹丹 卜振翔 易伟劲 谢培钦 王凌云

黄翔, 林四英, 谷丹丹, 卜振翔, 易伟劲, 谢培钦, 王凌云. 液体变焦镜头的研究进展[J]. 中国光学(中英文), 2019, 12(6): 1179-1194. doi: 10.3788/CO.20191206.1179
引用本文: 黄翔, 林四英, 谷丹丹, 卜振翔, 易伟劲, 谢培钦, 王凌云. 液体变焦镜头的研究进展[J]. 中国光学(中英文), 2019, 12(6): 1179-1194. doi: 10.3788/CO.20191206.1179
HUANG Xiang, LIN Si-ying, GU Dan-dan, BU Zhen-xiang, YI Wei-jin, XIE Pei-qin, WANG Ling-yun. Review on progress of variable-focus liquid lens[J]. Chinese Optics, 2019, 12(6): 1179-1194. doi: 10.3788/CO.20191206.1179
Citation: HUANG Xiang, LIN Si-ying, GU Dan-dan, BU Zhen-xiang, YI Wei-jin, XIE Pei-qin, WANG Ling-yun. Review on progress of variable-focus liquid lens[J]. Chinese Optics, 2019, 12(6): 1179-1194. doi: 10.3788/CO.20191206.1179

液体变焦镜头的研究进展

doi: 10.3788/CO.20191206.1179
基金项目: 

福建省卫生教育联合攻关计划 WKJ2016-2-21

详细信息
    作者简介:

    黄翔(1995—), 男, 浙江安吉人, 硕士研究生, 2017年于厦门理工学院获得学士学位, 主要从事微光学系统和流体喷射方面的研究。E-mail:huangxiang701@163.com

    王凌云(1978—), 男, 四川通江人, 副教授, 博士生导师, 2001年、2009年于厦门大学分别获得学士、博士学位(硕博连读), 主要从事微纳传感系统、微光学系统与人工视觉、流体喷射与3D打印等方面的研究。E-mail:wangly@xmu.edu.cn

  • 中图分类号: TH74

Review on progress of variable-focus liquid lens

Funds: 

Fujian Health and Education Joint Tackling Plan WKJ2016-2-21

More Information
  • 摘要: 相比于传统的机械变焦镜头,液体变焦镜头具有体积小、响应快、成本低和集成度高等特点,被广泛应用于图像采集、目标追踪和特征识别等领域。焦距调节方式决定了液体镜头的性能和应用,本文概括了基于液晶材料、介电泳、电化学、电润湿原理的物性控制式变焦镜头和基于静电力、电磁力、压力调节和环境响应的机械驱动式变焦镜头的研究现状,介绍了液体变焦镜头在光流控芯片内的集成应用,并指出当前面临的主要问题和解决方案。最后,对液体变焦镜头的发展前景和研究方向进行了展望和总结。

     

  • 图 1  液体变焦镜头的分类

    Figure 1.  Classification of liquid variable-focus lenses

    图 2  不同电压下液晶分子取向示意图[42]

    Figure 2.  Liquid crystal molecular orientation model at various voltages[42]

    图 3  电化学活化液体透镜示意图[29]

    Figure 3.  Schematic of electrochemically activated liquid lens[29]

    图 4  基于介电泳力作用的液体变焦镜头结构和器件[30]

    Figure 4.  Structure and device of the variable-focus liquid lens based on dielectrophoresis force[30]

    图 5  电润湿原理及实验[45]。(a)介质上电润湿原理示意图;(b)加压前后液滴润湿性实验

    Figure 5.  Principle and experiment of electrowetting[45]. (a)Schematic diagram of electrowetting-on-dielectric. (b)Wettability test of droplet before and after applying voltage

    图 6  可调电润湿液体镜头结构与实验[34]。(a)透镜结构;(b)环形光圈模式;(c)中心光圈模式;(d)焦距与电压的关系

    Figure 6.  Structure and experiment of the switchable electrowetting liquid lens[34]. (a)Cell structure. (b)Annular aperture mode. (c)Central clear aperture mode. (d)The relations between focal length and applied voltage

    图 7  基于静电吸引的液体变焦镜头[47]。(a)透镜截面结构;(b)无电压状态;(c)加电压状态

    Figure 7.  Variable-focus liquid lens by electrostatic attraction[47]. (a)Cross-sectional structure of the lens. (b)Without an applied voltage. (c)With an applied voltage

    图 8  3种常见的电磁驱动液体镜头结构[49-51]。(a)基于电磁吸引的液体变焦镜头;(b)基于通电线圈洛伦兹力驱动的液体变焦镜头;(c)基于铁磁流体流动的液体变焦镜头

    Figure 8.  Structure of three common electromagnetically driven liquid lenses[49-51]. (a) Electromagnetic attraction varifocal liquid lens. (b) Electric coil Lorentz force driven varifocal liquid lens. (c) Ferrofluid-based fluid varifocal liquid lens

    图 9  压力调节液体镜头结构[54-56]。(a)基于液压控制的液体变焦镜头;(b)基于手动操纵的液体变焦镜头;(c)基于形状记忆合金变形的液体变焦镜头

    Figure 9.  Structures of pressure adjusted liquid lenses[54-56].(a)Variable-focus liquid lens based on hydraulic control.(b)Variable-focus liquid lens based on manual actuation. (c)Variable-focus liquid lens based on shape memory alloy deformation

    图 10  激光诱导变焦透镜的原理及实验[59]

    Figure 10.  Principle and experiment of varifocal liquid lens actuated by laser-induced[59]

    图 11  超声压电激励液晶透镜[60]

    Figure 11.  Liquid crystal lens actuated by ultrasonic piezoelectric [60]

    图 12  基于液体变焦镜头集成的光流控芯片[61-62]。(a)用于流动环境中生物细胞捕捉的热梯度折射率液体镜头;(b)三维液-液双凸凹变焦镜头用于生物细胞成像

    Figure 12.  Varifocal liquid lens integrated optofluidic chip[61-62].(a)Thermal gradient refractive index liquid lens for trapping single living cell in flowing environments. (b)Switchable 3D liquid-liquid biconvex lens for biological cell image

    表  1  4种介质层的实验结果

    Table  1.   Experimental results obtained with four kinds of dielectric layers

    介电层 填充液 击穿电压/V 工作电压/V
    Parylene C D.I water 95 10
    SDS 20 2
    Parylene C+Al2O3 D.I water 125 50
    SDS 22 6
    Parylene C+SiO2 D.I water 120 40
    SDS 20 2
    Parylene C+SiO2+Al2O3 D.I water 135 65
    SDS 24 8
    下载: 导出CSV
  • [1] 顾寄南, 尚正阳, 唐仕喜, 等.当前智能制造若干关键技术综述[J].机械设计与制造工程, 2017, 46(9):11-15. doi: 10.3969/j.issn.2095-509X.2017.09.002

    GU J N, SHANG ZH Y, TANG SH X, et al.. The symposium on some key technologies of intelligent manufacturing[J]. Machine Design and Manufacturing Engineering, 2017, 46(9):11-15.(in Chinese) doi: 10.3969/j.issn.2095-509X.2017.09.002
    [2] 阮晋蒙.机器视觉:让中国制造2025"看"得更远[J].新经济导刊, 2017(z1):80-83. http://d.old.wanfangdata.com.cn/Periodical/yygx200605025

    RUAN J M. Machine vision:let made in China 2025 "see" farther[J]. New Economy Weekly, 2017(z1):80-83.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yygx200605025
    [3] 王耀南, 陈铁健, 贺振东, 等.智能制造装备视觉检测控制方法综述[J].控制理论与应用, 2015, 32(3):273-286. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201503001

    WANG Y N, CHEN T J, HE ZH D, et al.. Review on the machine vision measurement and control technology for intelligent manufacturing equipment[J]. Control Theory & Applications, 2015, 32(3):273-286.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201503001
    [4] SUN J W, MENG Y, TAN J Y, et al.. A vision-based perception framework for outdoor navigation tasks applicable to legged robots[C]. 2017 Chinese Automation Congress, IEEE, 2017: 2894-2899.
    [5] ZHANG H, LI X L, ZHONG H, et al.. Automated machine vision system for liquid particle inspection of pharmaceutical injection[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6):1278-1297. doi: 10.1109/TIM.2018.2800258
    [6] JOSHI K D, CHAUHAN V, SURGENOR B. A flexible machine vision system for small part inspection based on a hybrid SVM/ANN approach[J]. Journal of Intelligent Manufacturing, 2018:1-23. http://cn.bing.com/academic/profile?id=cc7d18cf9b623ee3ef57a5d6c9919d9a&encoded=0&v=paper_preview&mkt=zh-cn
    [7] 童季刚, 廖菲, 罗良传.一种机器视觉的瓶罐缺陷检测系统设计[J].机电工程技术, 2016, 45(8):28-31. doi: 10.3969/j.issn.1009-9492.2016.08.009

    TONG J G, LIAO F, LUO L CH. Design of bottle cap encapsulation testing based on machine vision[J]. Mechanical & Electrical Engineering Technology, 2016, 45(8):28-31.(in Chinese) doi: 10.3969/j.issn.1009-9492.2016.08.009
    [8] 刘明周, 马靖, 张淼, 等.基于机器视觉的机械产品装配系统在线作业方法[J].计算机集成制造系统, 2015, 21(9):2343-2353. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201509009

    LIU M ZH, MA J, ZHANG M, et al.. Online operation method for assembly system of mechanical products based on machine vision[J]. Computer Integrated Manufacturing Systems, 2015, 21(9):2343-2353.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201509009
    [9] 李丽丽, 熊倍华, 贾海龙.高速机器人分拣系统机器视觉技术的应用[J].装备制造技术, 2016(11):11-12, 31. doi: 10.3969/j.issn.1672-545X.2016.11.004

    LI L L, XIONG B H, JIA H L. Application of high-speed sorting systems robot machine vision technology[J]. Equipment Manufacturing Technology, 2016(11):11-12, 31.(in Chinese) doi: 10.3969/j.issn.1672-545X.2016.11.004
    [10] ZHONG Y H, GAO J Y, LEI Q L, et al.. A vision-based counting and recognition system for flying insects in intelligent agriculture[J]. Sensors, 2018, 18(5):1489. doi: 10.3390/s18051489
    [11] 李铮, 戴明, 李嘉全.步进电机驱动的直线变倍成像系统研究[J].中国光学, 2018, 11(5):779-789. http://www.chineseoptics.net.cn/CN/abstract/abstract9516.shtml

    LI ZH, DAI M, LI J Q. Continuous zooming imaging system driven by stepping motors[J]. Chinese Optics, 2018, 11(5):779-789.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9516.shtml
    [12] 王潇枫, 石岩, 庄一, 等.变焦结构光成像系统的光学设计[J].应用光学, 2018, 39(1):22-27. http://d.old.wanfangdata.com.cn/Periodical/yygx201801004

    WANG X F, SHI Y, ZHUANG Y, et al.. Optical design of zoom structured light imaging system[J]. Journal of Applied Optics, 2018, 39(1):22-27.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yygx201801004
    [13] 李零印, 王一凡.液体变焦技术的发展与展望[J].中国光学, 2012, 5(6):578-582. http://www.chineseoptics.net.cn/CN/abstract/abstract8907.shtml

    LI L Y, WANG Y F. Development and prospect of varifocal-liquid technique[J]. Chinese Optics, 2012, 5(6):578-582.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8907.shtml
    [14] 石广丰, 杨彬, 史国权, 等.高速变焦液体透镜的发展动态综述[J].红外技术, 2014, 36(10):777-781, 786. http://d.old.wanfangdata.com.cn/Periodical/hwjs201410002

    SHI G F, YANG B, SHI G Q, et al.. A review of the development of high-speed liquid lens[J]. Infrared Technology, 2014, 36(10):777-781, 786.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwjs201410002
    [15] 贾书海, 唐振华, 董君, 等.柔性变焦透镜发展现状[J].中国光学, 2015, 8(4):535-547. http://www.chineseoptics.net.cn/CN/abstract/abstract9291.shtml

    JIA SH H, TANG ZH H, DONG J, et al.. Recent advances in flexible variable-focus lens[J]. Chinese Optics, 2015, 8(4):535-547.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9291.shtml
    [16] SHAHINI A, JIN H, ZHOU ZH X, et al.. Toward individually tunable compound eyes with transparent graphene electrode[J]. Bioinspiration & Biomimetics, 2017, 12(4):046002. http://cn.bing.com/academic/profile?id=034fd352a03d26640cc551b253a986f3&encoded=0&v=paper_preview&mkt=zh-cn
    [17] LIANG D, WANG X Y. A bio-inspired optical system with a polymer membrane and integrated structure[J]. Bioinspiration & Biomimetics, 2016, 11(6):066008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9304489
    [18] KONG M M, CHEN D, CHEN X, et al.. Research of the human eye model with variable-focus liquid lens[J]. Microfluidics and Nanofluidics, 2017, 21(3):40. doi: 10.1007/s10404-017-1857-z
    [19] CHENG Y, CAO J, MENG L T, et al.. Reducing defocus aberration of a compound and human hybrid eye using liquid lens[J]. Applied Optics, 2018, 57(7):1679-1688. doi: 10.1364/AO.57.001679
    [20] 潘逸君, 李湘宁, 李强, 等.双液体透镜变焦系统的高斯光学分析[J].应用光学, 2016, 37(2):198-202. http://d.old.wanfangdata.com.cn/Periodical/yygx201602009

    PAN Y J, LI X N, LI Q, et al.. Gauss optical analysis of double liquid lens zoom system[J]. Journal of Applied Optics, 2016, 37(2):198-202.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yygx201602009
    [21] 张鹰, 张新, 史广维, 等.液体透镜在变焦系统中的应用[J].中国光学, 2013, 6(1):46-56. http://www.chineseoptics.net.cn/CN/abstract/abstract8854.shtml

    ZHANG Y, ZHANG X, SHI G W, et al.. Applications of liquid lenses in zoom systems[J]. Chinese Optics, 2013, 6(1):46-56.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8854.shtml
    [22] BEZRUCHENKO V S, MURAVSKY A A, MURAUSKI A A, et al.. Tunable liquid crystal lens based on pretilt angle gradient alignment[J]. Molecular Crystals and Liquid Crystals, 2016, 626(1):222-228. doi: 10.1080/15421406.2015.1106890
    [23] LI H, PAN F, WU Y T, et al.. Improvement in imaging contrast feature of liquid crystal lens with the dopant of multi-walled carbon nanotubes[J]. Applied Optics, 2017, 56(23):6655-6662. doi: 10.1364/AO.56.006655
    [24] LI H, PENG J, PAN F, et al.. Focal stack camera in all-in-focus imaging via an electrically tunable liquid crystal lens doped with multi-walled carbon nanotubes[J]. Optics Express, 2018, 26(10):12441-12454. doi: 10.1364/OE.26.012441
    [25] 吕文明, 张红霞, 宋晓敏, 等.梯形凸起电极液晶变焦透镜[J].液晶与显示, 2018, 33(1):30-37. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201801004

    LV W M, ZHANG H X, SONG X M, et al.. Tunable liquid crystal lens with raised trapezoidal electrodes[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(1):30-37.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201801004
    [26] GIDEN I H, ETI N, REZAEI B, et al.. Adaptive graded index photonic crystal lens design via nematic liquid crystals[J]. IEEE Journal of Quantum Electronics, 2016, 52(10):6400607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffbe87d373e872eaf73bcf1596a5e589
    [27] CHANG K H, VARANYTSIA A, CHIEN L C. Electrically tunable liquid crystal lens with suppressed axial chromatic aberration[J]. Applied Physics Letters, 2017, 111(3):2401-2410. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=490f41f71da2c84861d17d4f5c595ade
    [28] DOU H, CHU F, GUO Y Q, et al.. Large aperture liquid crystal lens array using a composited alignment layer[J]. Optics Express, 2018, 26(7):9254-9262. doi: 10.1364/OE.26.009254
    [29] LÓPEZ C A, LEE C C, HIRSA A H. Electrochemically activated adaptive liquid lens[J]. Applied Physics Letters, 2005, 87(13):134102. doi: 10.1063/1.2058209
    [30] LU Y SH, TU H E, XU Y, et al.. Tunable dielectric liquid lens on flexible substrate[J]. Applied Physics Letters, 2013, 103(26):261113. doi: 10.1063/1.4858616
    [31] JIN B Y, REN H W, CHOI W K. Dielectric liquid lens with chevron-patterned electrode[J]. Optics Express, 2017, 25(26):32411-32419. doi: 10.1364/OE.25.032411
    [32] ALMOALLEM Y D, JIANG H R. Double-sided design of electrodes driving tunable dielectrophoretic miniature lens[J]. Journal of Microelectromechanical Systems, 2017, 26(5):1122-1131. doi: 10.1109/JMEMS.2017.2711966
    [33] LIAO K W, WANG W J, LUO R C, et al.. Development of portable microscope with tunable working distance by using dielectric liquid lens[C]. 2014 International Conference on Optical MEMS and Nanophotonics, IEEE, 2014: 153-154.
    [34] LI L, LIU CH, REN H W, et al.. Optical switchable electrowetting lens[J]. IEEE Photonics Technology Letters, 2016, 28(14):1505-1508. doi: 10.1109/LPT.2016.2555991
    [35] BERGE B, PESEUX J. Variable focal lens controlled by an external voltage:An application of electrowetting[J]. The European Physical Journal E, 2000, 3(2):159-163. doi: 10.1007/s101890070029
    [36] BERGE B. Liquid lens technology: principle of electrowetting based lenses and applications to imaging[C]. Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems, IEEE, 2005.
    [37] KOPP D, BRENDER T, ZAPPE H. All-liquid dual-lens optofluidic zoom system[J]. Applied Optics, 2017, 56(13):3758-3763. doi: 10.1364/AO.56.003758
    [38] WEI X, KAWAMURA G, MUTO H, et al.. Fabrication on low voltage driven electrowetting liquid lens by dip coating processes[J]. Thin Solid Films, 2016, 608:16-20. doi: 10.1016/j.tsf.2016.04.006
    [39] LI L, WANG J H, WANG Q H, et al.. Displaceable and focus-tunable electrowetting optofluidic lens[J]. Optics Express, 2018, 26(20):25839-25848. doi: 10.1364/OE.26.025839
    [40] HAO CH L, LIU Y H, CHEN X M, et al.. Electrowetting on liquid-infused film(EWOLF):Complete reversibility and controlled droplet oscillation suppression for fast optical imaging[J]. Scientific Reports, 2014, 4:6846.
    [41] SATO S. Liquid-crystal lens-cells with variable focal length[J]. Japanese Journal of Applied Physics, 1979, 18(9):1679-1684. doi: 10.1143/JJAP.18.1679
    [42] NOSE T, MASUDA S, SATO S. A liquid crystal microlens with hole-patterned electrodes on both substrates[J]. Japanese Journal of Applied Physics, 1992, 31(5B):1643-1646.
    [43] REN H W, WU S T. Introduction to Adaptive Lenses[M]. Hoboken:Wiley, 2012:181-183.
    [44] HAWKINS B G, SMITH A E, SYED Y A, et al.. Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, DC-biased, AC electric fields[J]. Analytical Chemistry, 2007, 79(19):7291-7300. doi: 10.1021/ac0707277
    [45] 韩春光, 郭隐彪.基于电润湿技术的液体微透镜研究进展[J].机械设计与制造, 2010(9):247-249. doi: 10.3969/j.issn.1001-3997.2010.09.103

    HAN CH G, GUO Y B. Current development in liquid micro-lens based on electrowetting technology[J]. Machinery Design & Manufacture, 2010(9):247-249.(in Chinese) doi: 10.3969/j.issn.1001-3997.2010.09.103
    [46] MUGELE F, BARET J C. Electrowetting:from basics to applications[J]. Journal of Physics:Condensed Matter, 2005, 17(28):R705-R774. doi: 10.1088/0953-8984/17/28/R01
    [47] POUYDEBASQUE A, BRIDOUX C, JACQUET F, et al.. Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers[J]. Sensors and Actuators A:Physical, 2011, 172(1):280-286. doi: 10.1016/j.sna.2011.05.005
    [48] POUYDEBASQUE A, BOLIS S, BRIDOUX C, et al.. Process optimization and performance analysis of an electrostatically actuated varifocal liquid lens[C]. 201116th international Solid-state Sensors, Actuators and Microsystems Conference, IEEE, 2011.
    [49] OH S H, RHEE K, CHUNG S K. Electromagnetically driven liquid lens[J]. Sensors and Actuators A:Physical, 2016, 240:153-159. doi: 10.1016/j.sna.2016.01.048
    [50] LEE S W, LEE S S. Focal tunable liquid lens integrated with an electromagnetic actuator[J]. Applied Physics Letters, 2007, 90(12):121129. doi: 10.1063/1.2716213
    [51] CHENG H CH, XU S, LIU Y F, et al.. Adaptive mechanical-wetting lens actuated by ferrofluids[J]. Optics Communications, 2011, 284(8):2118-2121. doi: 10.1016/j.optcom.2010.12.073
    [52] YU H, ZHOU G, CHAU F S, et al.. Tunable electromagnetically actuated liquid-filled lens[J]. Sensors and Actuators A:Physical, 2011, 167(2):602-607. doi: 10.1016/j.sna.2011.03.005
    [53] XIAO W J, HARDT S. An adaptive liquid microlens driven by a ferrofluidic transducer[J]. Journal of Micromechanics and Microengineering, 2010, 20(5):055032. doi: 10.1088/0960-1317/20/5/055032
    [54] 吴雯婷, 梁忠诚, 仉乐.可调微流控光学变焦透镜[J].发光学报, 2015, 36(6):718-723. http://d.old.wanfangdata.com.cn/Periodical/fgxb201506020

    WU W T, LIANG ZH CH, ZHANG L. Optofluidic varifocal microlens[J]. Chinese Journal of Luminescence, 2015, 36(6):718-723.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201506020
    [55] PATRA R, AGARWAL S, KONDARAJU S, et al.. Membrane-less variable focus liquid lens with manual actuation[J]. Optics Communications, 2017, 389:74-78. doi: 10.1016/j.optcom.2016.12.021
    [56] HASAN N, KIM H, MASTRANGELO C H. Large aperture tunable-focus liquid lens using shape memory alloy spring[J]. Optics Express, 2016, 24(12):13334-13342. doi: 10.1364/OE.24.013334
    [57] ZHAO P P, ATAMAN C, ZAPPE H. Gravity-immune liquid-filled tunable lens with reduced spherical aberration[J]. Applied Optics, 2016, 55(28):7816-7823. doi: 10.1364/AO.55.007816
    [58] LIANG D, LIANG D T, WANG X Y, et al.. Flexible fluidic lens with polymer membrane and multi-flow structure[J]. Optics Communications, 2018, 421:7-13. doi: 10.1016/j.optcom.2018.03.062
    [59] MALYUK A Y, IVANOVA N A. Varifocal liquid lens actuated by laser-induced thermal Marangoni forces[J]. Applied Physics Letters, 2018, 112(10):103701. doi: 10.1063/1.5023222
    [60] SHIMIZU Y, KOYAMA D, FUKUI M, et al.. Ultrasound liquid crystal lens[J]. Applied Physics Letters, 2018, 112(16):161104. doi: 10.1063/1.5027131
    [61] LIU H L, SHI Y, LIANG L, et al.. A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments[J]. Lab on a Chip, 2017, 17(7):1280-1286. doi: 10.1039/C7LC00078B
    [62] LIANG L, ZHU X Q, LIU H L, et al.. A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow[J]. Lab on a Chip, 2017, 17(19):3258-3263. doi: 10.1039/C7LC00598A
    [63] WEE D, HWANG S H, SONG Y S, et al.. Tunable optofluidic birefringent lens[J]. Soft Matter, 2016, 12(17) 3868-3876. doi: 10.1039/C5SM02782A
    [64] SONG CH L, LUONG T D, KONG T F, et al.. Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens[J]. Optics Letters, 2011, 36(5):657-659. doi: 10.1364/OL.36.000657
    [65] CHEN Q M, LI T G, ZHU Y J, et al.. Dielectrophoresis-actuated in-plane optofluidic lens with tunability of focal length from negative to positive[J]. Optics Express, 2018, 26(6):6532-6541. doi: 10.1364/OE.26.006532
    [66] CHEN Q M, LI T H, LI ZH H, et al.. Dielectrophoresis-actuated liquid lenses with dual air/liquid interfaces tuned from biconcave to biconvex[J]. Lab on a Chip, 2018, 18(24):3849-3854. doi: 10.1039/C8LC00999F
    [67] CHEN Q M, LI T H, LI ZH H, et al.. Optofluidic tunable lenses for in-plane light manipulation[J]. Micromachines, 2018, 9(3):97. doi: 10.3390/mi9030097
    [68] 闵伶俐, 陈松月, 盛智芝, 等.仿生微流控的发展与应用[J].物理学报, 2016, 65(17):178301. doi: 10.7498/aps.65.178301

    MIN L L, CHEN S Y, SHENG ZH ZH, et al.. Development and application of bio-inspired and biomimetic microfluidics[J]. Acta Physica Sinica, 2016, 65(17):178301.(in Chinese) doi: 10.7498/aps.65.178301
    [69] YE M, WANG B, SATO S. Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material[J]. Optics Express, 2008, 16(6):4302-4308. doi: 10.1364/OE.16.004302
    [70] BEECKMAN J, YANG T H, NYS I, et al.. Multi-electrode tunable liquid crystal lenses with one lithography step[J]. Optics Letters, 2018, 43(2):271-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f6ab91091a7ada0f1cd67d0388cdd83
    [71] 胡水兰, 彭润玲, 李一凡, 等.双层介电薄膜结构双液体变焦透镜的研究[J].光子学报, 2014, 43(2):0223003. http://d.old.wanfangdata.com.cn/Periodical/gzxb201402012

    HU SH L, PENG R L, LI Y F, et al.. Research on the double-liquid lens with double-layer dielectric films[J]. Acta Photonica Sinica, 2014, 43(2):0223003.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201402012
    [72] 魏茂炜, 彭润玲, 汤征洋, 等.低压双液体变焦透镜的理论及工艺研究[J].光子学报, 2015, 44(5):36-40. http://d.old.wanfangdata.com.cn/Periodical/gzxb201505007

    WEI M W, PENG R L, TANG ZH Y, et al.. Study on theory and technology of low voltage variable-focus double liquid lens[J]. Acta Photonica Sinica, 2015, 44(5):36-40.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201505007
    [73] LEE J, KIM J, KIM D, et al.. Low voltage electrowetting lenticular lens by using multilayer dielectric structure[J]. Proceedings of SPIE, 2017, 10116:1011609. http://cn.bing.com/academic/profile?id=01f7efa0bdddfd1424fd6ce0729614f6&encoded=0&v=paper_preview&mkt=zh-cn
    [74] SUN W, YANG F Q. Evaporation of a volatile liquid lens on the surface of an immiscible liquid[J]. Langmuir, 2016, 32(24):6058-6067. doi: 10.1021/acs.langmuir.6b01471
    [75] HU X D, ZHANG SH G, LIU Y, et al.. Electrowetting based infrared lens using ionic liquids[J]. Applied Physics Letters, 2011, 99(21):213505. doi: 10.1063/1.3663633
    [76] BAE J W, SHIN E J, JEONG J, et al.. High-performance PVC gel for adaptive micro-lenses with variable focal length[J]. Scientific Reports, 2017, 7(1):2068. doi: 10.1038/s41598-017-02324-9
    [77] SHI L, YANG R S, LU SH Y, et al.. Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency[J]. NPG Asia Materials, 2018, 10(8):821-826. doi: 10.1038/s41427-018-0077-7
    [78] WANG SH M, WU P C, SU V C, et al.. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3):227-323. doi: 10.1038/s41565-017-0052-4
    [79] SHE A, ZHANG SH Y, SHIAN S, et al.. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2):eaap9957. doi: 10.1126/sciadv.aap9957
    [80] WATSON A M, DEASE K, TERRAB S, et al.. Focus-tunable low-power electrowetting lenses with thin parylene films[J]. Applied Optics, 2015, 54(20):6224-6229. doi: 10.1364/AO.54.006224
    [81] VAFAEI S, PODOWSKI M Z. Theoretical analysis on the effect of liquid droplet geometry on contact angle[J]. Nuclear Engineering and Design, 2005, 235(10-12):1293-1301. doi: 10.1016/j.nucengdes.2005.02.026
    [82] REN H W, XU S, WU S T. Effects of gravity on the shape of liquid droplets[J]. Optics Communications, 2010, 283(17):3255-3258. doi: 10.1016/j.optcom.2010.04.045
    [83] LI L, WANG Q H, JIANG W. Liquid lens with double tunable surfaces for large power tunability and improved optical performance[J]. Journal of Optics, 2011, 13(11):115503. doi: 10.1088/2040-8978/13/11/115503
    [84] ZHANG W, LIU P F, WEI X N, et al.. The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens[J]. Proceedings of SPIE, 2010, 7849:78491W. doi: 10.1117/12.869866
    [85] POKORN P, MEJKAL F, KULMON P, et al.. Calculation of nonlinearly deformed membrane shape of liquid lens caused by uniform pressure[J]. Applied Optics, 2017, 56(21):5939-5947. doi: 10.1364/AO.56.005939
    [86] DING Z Q, WANG CH H, HU ZH X, et al.. Surface profiling of an aspherical liquid lens with a varied thickness membrane[J]. Optics Express, 2017, 25(4):3122-3132. doi: 10.1364/OE.25.003122
    [87] 朱凌峰, 孔梅梅, 宋驰, 等.电润湿双液体透镜的界面面型分析[J].光电工程, 2016, 43(12):65-71. doi: 10.3969/j.issn.1003-501X.2016.12.011

    ZHU L F, KONG M M, SONG CH, et al.. Analysis on the interface shape of double liquid lens based on electro-wetting technology[J]. Opto-Electronic Engineering, 2016, 43(12):65-71.(in Chinese) doi: 10.3969/j.issn.1003-501X.2016.12.011
    [88] ZOHRABI M, CORMACK R H, MCCULLOUGH C, et al.. Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices[J]. Optics Express, 2017, 25(25):31451-31461. doi: 10.1364/OE.25.031451
    [89] MISHRA K, MURADE C, CARREEL B, et al.. Optofluidic lens with tunable focal length and asphericity[J]. Scientific Reports, 2014, 4:6378. http://cn.bing.com/academic/profile?id=22af7772312360fd77f20793ddc4a5ff&encoded=0&v=paper_preview&mkt=zh-cn
    [90] BEGEL L, GALSTIAN T. Liquid crystal lens with corrected wavefront asymmetry[J]. Applied Optics, 2018, 57(18):5072-5078. doi: 10.1364/AO.57.005072
    [91] 郭鑫, 张薇, 速晋辉, 等.可调焦胶囊内窥镜光学系统设计[J].光子学报, 2015, 44(5):179-183. http://d.old.wanfangdata.com.cn/Periodical/gzxb201505031

    GUO X, ZHANG W, SU J H, et al.. Design of a focus-tunable capsule endoscope system[J]. Acta Photonica Sinica, 2015, 44(5):179-183.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201505031
    [92] XIONG K D, YANG S H, LI X W, et al.. Autofocusing optical-resolution photoacoustic endoscopy[J]. Optics Letters, 2018, 43(8):1846-1849. doi: 10.1364/OL.43.001846
    [93] 张祥翔.基于液体透镜的显微镜自动调焦技术[J].光电工程, 2015, 42(10):37-42. doi: 10.3969/j.issn.1003-501X.2015.10.007

    ZHANG X X. Autofocus technology based on liquid lens in microscopic imaging system[J]. Opto-Electronic Engineering, 2015, 42(10):37-42.(in Chinese) doi: 10.3969/j.issn.1003-501X.2015.10.007
    [94] LI L, YUAN R Y, WANG J H, et al.. Electrically optofluidic zoom system with a large zoom range and high-resolution image[J]. Optics Express, 2017, 25(19):22280-22291. doi: 10.1364/OE.25.022280
    [95] REZA S A, RIZA N A. A liquid lens-based broadband variable fiber optical attenuator[J]. Optics Communications, 2009, 282(7):1298-1303. doi: 10.1016/j.optcom.2008.12.029
    [96] AMIRSOLAIMANI B, PEYMAN G, SCHWIEGERLING J, et al.. A new low-cost, compact, auto-phoropter for refractive assessment in developing countries[J]. Scientific Reports, 2017, 7(1):13990. doi: 10.1038/s41598-017-14507-5
    [97] XU CH L, ZHAO W CH, HU J H, et al.. Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement[J]. Fuel, 2017, 196:550-563. doi: 10.1016/j.fuel.2017.01.115
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  3119
  • HTML全文浏览量:  1134
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-18
  • 修回日期:  2019-03-04
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!