留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆偏振光谱测量技术及其在薄膜材料研究中的应用

朱绪丹 张荣君 郑玉祥 王松有 陈良尧

朱绪丹, 张荣君, 郑玉祥, 王松有, 陈良尧. 椭圆偏振光谱测量技术及其在薄膜材料研究中的应用[J]. 中国光学, 2019, 12(6): 1195-1234. doi: 10.3788/CO.20191206.1195
引用本文: 朱绪丹, 张荣君, 郑玉祥, 王松有, 陈良尧. 椭圆偏振光谱测量技术及其在薄膜材料研究中的应用[J]. 中国光学, 2019, 12(6): 1195-1234. doi: 10.3788/CO.20191206.1195
ZHU Xu-dan, ZHANG Rong-jun, ZHENG Yu-xiang, WANG Song-you, CHEN Liang-yao. Spectroscopic ellipsometry and its applications in the study of thin film materials[J]. Chinese Optics, 2019, 12(6): 1195-1234. doi: 10.3788/CO.20191206.1195
Citation: ZHU Xu-dan, ZHANG Rong-jun, ZHENG Yu-xiang, WANG Song-you, CHEN Liang-yao. Spectroscopic ellipsometry and its applications in the study of thin film materials[J]. Chinese Optics, 2019, 12(6): 1195-1234. doi: 10.3788/CO.20191206.1195

椭圆偏振光谱测量技术及其在薄膜材料研究中的应用

doi: 10.3788/CO.20191206.1195
基金项目: 

国家自然科学基金资助项目 11674062

国家自然科学基金资助项目 61775042

国家自然科学基金资助项目 11174058

国家自然科学基金资助项目 61575048

国家自然科学基金资助项目 69425004

国家自然科学基金资助项目 69178007

国家自然科学基金资助项目 19174013

详细信息
    作者简介:

    朱绪丹(1995—), 女, 湖北荆门人, 博士研究生, 2017年于电子科技大学获得学士学位, 主要从事椭圆偏振光谱检测薄膜光学性质的研究。E-mail:19110720016@fudan.edu.cn

    张荣君(1972—),男,河南信阳人,博士,研究员/教授,博士生导师,主要从事信息功能材料的光学性质、光谱分析系统与光电子器件等方面研究。E-mail:rjzhang@fudan.edu.cn

  • 中图分类号: O484.5;O433.1

Spectroscopic ellipsometry and its applications in the study of thin film materials

Funds: 

National Natural Science Foundation of China 11674062

National Natural Science Foundation of China 61775042

National Natural Science Foundation of China 11174058

National Natural Science Foundation of China 61575048

National Natural Science Foundation of China 69425004

National Natural Science Foundation of China 69178007

National Natural Science Foundation of China 19174013

More Information
  • 摘要: 椭圆偏振光谱测量技术通过测量线偏振光经材料表面反射后光的相对振幅与相位改变量计算得到椭偏参数,再通过椭偏参数的拟合获取样品光学性质。由于其具有非接触、高灵敏度、非破坏性等优势,广泛应用于物理、化学、材料科学和微电子等方面,是一种不可或缺的光学测量手段。本文首先简要回顾了该技术的发展历程,接着阐述了传统椭偏仪的基本原理,按照测量原理的不同可将椭偏仪分为消光式和光度式。随后,本文简单介绍了一些常用椭偏仪的基本架构、测量原理和相关应用,并比较了他们的优缺点,重点展示了复旦大学研制的双重傅立叶变换红外椭偏光谱系统。然后按照椭偏参数处理的基本步骤:测量、建模与拟合3个方面,阐述了其过程,详细剖析了参数拟合所使用的各种光学色散模型,同时通过应用实例介绍了各色散模型的应用情况。最后,对未来椭偏技术的发展方向进行了展望。
  • 图  1  1941年至今主题包含“ellipsometry”(椭偏技术)的论文发表情况统计。(a)论文发表篇数统计,(b)发表论文研究方向统计图。(数据来源:Isi Web of Science)

    Figure  1.  Statistical analysis of published papers with the topic of 'ellipsometry' from 1941 to the present. (a)Publication statistics of papers, (b)research direction of published papers. (Source:ISI Web of Science)

    图  2  椭偏仪测试原理示意图[34]

    Figure  2.  Measurement principle of ellipsometry[34]

    图  3  偏振光在介质界面处的反射与折射。(a)s光,(b)p光[34]

    Figure  3.  Reflection and refraction of polarized light at the interface of the medium. (a)s polarization, and (b)p polarization[34]

    图  4  PCSA型消光式椭偏仪结构示意图(图中ψ=45°,Δ=90°,探测器检测此刻为消光状态)[34]

    Figure  4.  Schematic diagram of PCSA null ellipsometry(The (ψ, Δ) values of a sample are assumed to be ψ=45° and Δ=90°. In this measurement, the detected light intensity is zero)[34]

    图  5  RAE光度式椭偏仪示意图[34]

    Figure  5.  Optical configurations of RAE[34]

    图  6  RCE光度式椭偏仪示意图[34]

    Figure  6.  Optical configurations of RCE[34]

    图  7  双重傅立叶变换红外椭偏光谱系统。(a)系统整体结构示意图,1.偏振器;2.分析仪;3.步进电机;4.检测臂旋转平台;5.样品旋转平台;6.样品安装板;7.固定镜;8.移动镜[49],(b)RAP型椭偏仪原理图(其中P和A的方位角相对s轴顺时针旋转)[50]

    Figure  7.  Apparatus configuration of the infrared double-Fourier spectro-ellipsometer. (a)System overall structure diagram, 1.polarizer, 2.analyzer, 3.stepping motors, 4.rotating stage of detection arm, 5.rotating stage of sample, 6.sample mounting plate, 7.fixed mirrors, 8.moving mirror[49], (b)optical configuration of the RAP ellipsometric system(in which the azimuthal angles of the rotating P and A are clockwise to the s axis)[50]

    图  8  PME光度式椭偏仪示意图[34]

    Figure  8.  Optical configuration of PME[34]

    图  9  D.E.Aspnes等人设计的椭偏光谱仪结构示意图[56]

    Figure  9.  Schematic diagram of the optical system of the instrument designed by D. E. Aspnes et al.[56]

    图  10  G.Jin等人设计的成像椭偏仪示意图[59]

    Figure  10.  Schematic diagram of an imaging ellipsometer designed by G.Jin et al.[59]

    图  11  椭圆偏振光谱分析Sn薄膜的光学性质。(a)65°, 70°, 75°入射时测得的Sn薄膜椭偏参数,(b)Sn薄膜的折射率n和消光系数k与波长的关系[65]

    Figure  11.  Optical properties of Sn thin films studied by spectroscopic ellipsometry. (a)Spectral ellipsometry parameters of Sn films measured at 65°, 70°, and 75° at room temperature, (b)refractive index n and extinction coefficient k of the Sn film vary with wavelength[65]

    图  12  椭圆偏振光谱分析得到的~1 μm厚石墨x向和z向的复折射率(此时z向被认为是普通材料)[66]

    Figure  12.  Complex refractive indexes in the x- and z-directions of ~1 μm thick graphite obtained by ellipsometry(optical constants of graphite with z-component being treated as a general material)[66]

    图  13  椭偏分析材料光学性质的基本流程[68]

    Figure  13.  Basic flow chart of the optical properties of materials analyzed by ellipsometric analysis method[68]

    图  14  逐点椭偏参数反演方法分析椭偏参数的基本流程[70]

    Figure  14.  Basic flow chart of ellipsometric parameters analyzed by point-by-point ellipsometric parameter inversion method[70]

    图  15  逐点椭偏参数反演方法分析ZrO2超薄膜。(a)ZrO2超薄膜的光学模型,(b)点对点分析中使用的简化光学模型,(c)厚度为2.72 nm的ZrO2超薄膜在入射光子能量为3~6 eV内的ε2[72]

    Figure  15.  Analysis results of ultrathin ZrO2 films by point-by-point method. (a)Optical model of ZrO2 samples, (b)simplified one for point-by-point analysis in this work, (c)imaginary model of dielectric constants of the effective ZrO2 film with a thickness of 2.72 nm when incident photon energy is 3~6 eV range[72]

    图  16  逐点椭偏参数反演方法分析WS2超薄膜。(a)WS2超薄膜的光学模型,(b)和(c)分别是点对点拟合得到的WS2超薄膜复介电函数实部ε1和虚部ε2(入射光子能量范围为1.2~6.3 eV,S1、S2和S3分别代表溅射时间为20、50和70 s的3种样品)[73]

    Figure  16.  Analysis results of ultrathin WS2 films by point-by-point method. (a)Optical model of WS2 samples, (b) and (c) are real part ε1 and imaginary part ε2 for dielectric function extracted from point-by-point fitting respectively. (the photon energy range is 1.2~6.3 eV, S1, S2 and S3 are represeroted the sample for the sputtering times, 20 s, 50 s, and 70 s, respectively)[73]

    图  17  束缚电子的受力分析示意图[34]

    Figure  17.  Force analysis diagram of bound electron[34]

    图  18  NiOx, PEDOT:PSS和体异质结(BHJ)太阳能电池的复折射率[83]

    Figure  18.  Index of refraction, n and extinction coefficient, k for NiOx, PEDOT:PSS and BHJ solar cells[83]

    图  19  GO薄膜的椭偏光谱分析。(a)Lorentz模型3个振子中心能量按退火温度线性拓展(C1(方块),C2(圆圈),C3(三角));(b)λ=600 nm时不同退火温度下本征GO薄膜和束缚水的GO综合体系的光学常数曲线(本征GO薄膜的nGO(1),kGO(3),混合体系n(2),k(4),阴影部分为除去束缚水层的温度区间)[84]

    Figure  19.  Ellipsometric spectral analysis of GO thin films. (a)Three vibrator center energies of Lorentz model linearly expand according to annealing temperature (C1(squares), C2(circles), and C3(triangles)), (b)optical constant curve of GO synthesis system of intrinsic GO film and bound water nGO(1), kGO(3), and total n(2), k(4) vs. Tann for λ=600 nm. Dashed region denotes temperature interval where water is expelled[84]

    图  20  550 nm处沉积在Si衬底的Ta2O5薄膜折射率实验值和理论值随薄膜厚度的变化[81]

    Figure  20.  Experimental and theoretical refractive indices at 550 nm for the Ta2O5 films deposited on Si vary with thickness[81]

    图  21  椭偏光谱分析得到的~1μm厚石墨x向和z向的复折射率(此时z向被认为是Cauchy材料)[66]

    Figure  21.  Complex refractive indexes in the x- and z-directions of ~1 μm thick graphite obtained by ellipsometry(optical constants of graphite with z-component being treated as a Cauchy material)[66]

    图  22  采用多角度椭圆偏振光谱法分析制备在硅衬底上的石墨烯薄片的光学常数(x向)[66]

    Figure  22.  Reconstructed x-component optical constants of graphene prepared on silicon substrate using multi-angle spectroscopic ellipsometry[66]

    图  23  400 ℃退火后不同厚度的TiO2超薄膜复折射率谱。(a)折射率n,(b)消光系数k。(图(a)的插图显示了峰位置与ALD循环数的关系,图(b)的插图显示了在400 ℃下退火后不同厚度的TiO2超薄膜的(αE)1/2vs.E图)[95]

    Figure  23.  Complex refractive index spectra for TiO2 ultrathin films with different thicknesses after annealing at 400 ℃. (a)Refractive index n spectra, (b)extinction coefficient k spectra.(The insert of (a) shows plot of peak position versus ALD cycles. The insert of (b) shows plots of (αE)1/2vs. E for TiO2 ultrathin films with different thicknesses after annealing at 400 ℃)[95]

    图  24  Al2O3/ZnO纳米层状结构示意图[96]

    Figure  24.  Structure diagram of the Al2O3/ZnO nanolaminates[96]

    图  25  用于椭偏分析多层膜样品的光学模型[96]

    Figure  25.  Optical model of samples for SE analysis[96]

    图  26  生长在SiO2/Si衬底上的纳米层状结构多层膜系统的光学常数。(a)折射率n; (b)消光系数k[96]

    Figure  26.  Optical constants of nanolaminates grown on SiO2/Si substrate. (a)Refractive index n; (b)extinction coefficient k[96]

    图  27  CH3NH3PbI3钙钛矿薄膜椭偏分析。(a)作为光学模型的样品结构,(b)复折射率光谱[98]

    Figure  27.  SE analysis of CH3NH3PbI3 perovskite thin films. (a)Sample structure used for the optical model, (b)refractive index[98]

    图  28  在石英衬底上CH3NH3PbI3膜的表面粗糙层三层膜结构光学模型的示意图[99]

    Figure  28.  Schematic of the three-layer surface roughness model of the CH3NH3PbI3 film on a quartz substrate[99]

    图  29  计算得到CH3NH3PbI3材料的复折射率谱[99]

    Figure  29.  n(λ) and k(λ) results of CH3NH3PbI3 material[99]

    图  30  不同水合物含量的CH3NH3PbI3薄膜复折射率谱。(a)复折射率实部n,(b)复折射率虚部k[101]

    Figure  30.  Complex refractive index of CH3NH3PbI3 film with different levels of hydration water. (a)The refractive index n, (b)the extinction coefficient k[101]

    图  31  半导体中自由载流子吸收示意图。(a)自由载流子吸收,(b)点缺陷对自由载流子的散射[34]

    Figure  31.  Representation of free-carrier absorption in a semiconductor. (a)Free-carrier absorption, (b)scatter between free-carrier and point defect[34]

    图  32  不同厚度纳米金薄膜的复介电函数。(a)实部,(b)虚部[106]

    Figure  32.  Dielectric functions of the nano-thin Au film with different thicknesses. (a)Real parts, (b)imaginary parts[106]

    图  33  指甲的光学常数和实验值(垂直虚线表示从水合作用到脱水作用的变化)[67]

    Figure  33.  Optical constants and experimental values of finger nail.(The vertical dashed line marks the change from hydration to dehydration)[67]

    图  34  有效介质近似理论的物理模型。(a)Maxwell-Garnett模型; (b)Bruggeman模型[34]

    Figure  34.  Physical models for effective medium theories. (a)Maxwell Garnett, (b)Bruggeman[34]

    图  35  β-Sn薄膜样品的光学模型示意图[113]

    Figure  35.  Schematic of the layer structure for the β-Sn film sample[113]

    图  36  用于分析(a)薄膜和(b)纳米结构的椭偏技术和其他表征技术“合作情况”的分布统计图(AFM:原子力显微镜;SEM:扫描电子显微镜;TEM:透射电子显微镜;XPS:X射线光电子能谱;XRD:X射线衍射光谱)[114]

    Figure  36.  Distribution of techniques corroborating spectroscopic ellipsometry(SE) for analysis of (a)thin films and (b)nanostructures(AFM:atomic force microscopy; SEM:scanning electron microscopy; TEM:transmission electron microscopy; XPS:X-ray photoelectron spectroscopy; XRD:X-ray diffraction)[114]

    图  37  基于光纤的椭偏仪结构图[126]

    Figure  37.  Structural diagram of fiber-based ellipsometry[126]

    图  38  (左上)THz FDS椭偏仪的俯视图;(右下)THz FDS椭偏仪的技术制图的俯视图与主要组件(不包括吸波泡沫板和外壳)[136]

    Figure  38.  (Top left) Photograph(top view) of the THz FDS ellipsometer.(Bottom right) technical drawing(top view) of the THz FDS ellipsometer with major components indicated and without absorbing foam sheets and housing[136]

    图  39  双旋转补偿器型穆勒矩阵成像椭偏仪测量原理示意图[146]

    Figure  39.  Scheme of the dual rotating compensator Mueller matrix imaging ellipsometer[146]

    表  1  几种光度式椭偏仪优缺点总结[34]

    Table  1.   Advantages and disadvantages of several photometric ellipsometers[34]

    椭偏仪结构 优点 缺点
    RAE/RPE
    (不含补偿器)
    ①结构简单 ①Stokes的S3分量测试受限(-180°≤Δ<0°)
    ②工作在消光模式 ②在Δ等于0°和180°处有较大的测量误差
    RAE/RPE ①椭偏参数(ψΔ)在全光谱范围可测 ①相比RAE测试时间更长
    ②可以测量去极化谱 ②相比RAE结构更复杂
    ③全光谱范围椭偏参数测量敏感度相同
    RCE ①椭偏参数(ψΔ)在全光谱范围可测 相比RAE结构更复杂
    ②可以测量去极化谱
    ③全光谱范围椭偏参数测量敏感度相同
    PME ①测试快速 ①单次测量无法同时测试Stokes的S1S2分量
    ②在远红外波段可以实时测试 ②椭偏参数(ψΔ)在某些区域测试误差大
    ③可以测量去极化谱
    下载: 导出CSV
  • [1] 美国国家研究理事会.驾驭光:21世纪光科学与工程学[M].上海:上海科学技术文献出版社, 2001.

    National Research Council. Harnessing Light:Optical Science and Engineering for the 21st Century[M]. Shanghai:Shanghai Scientific and Technical Literature Press, 2001.(in Chinese)
    [2] 廖振兴, 杨芳, 夏文建.光学薄膜膜厚监控方法及其进展[J].激光杂志, 2004, 25(4):10-12. doi: 10.3969/j.issn.0253-2743.2004.04.004

    LIAO ZH X, YANG F, XIA W J. Optical film thickness monitoring methods and its progress[J]. Laser Journal, 2004, 25(4):10-12.(in Chinese) doi: 10.3969/j.issn.0253-2743.2004.04.004
    [3] 唐晋发.现代光学薄膜技术[M].杭州:浙江大学出版社, 2006.

    TANG J F. Modern Optical Film Technology[M]. Hangzhou:Zhejiang University Press, 2006. (in Chinese)
    [4] TOMPKINS H G. Industrial applications of spectroscopic ellipsometry[J]. Thin Solid Films, 2004, 455-456:772-778. doi: 10.1016/j.tsf.2004.01.045
    [5] DRUDE P. Ueber die gesetze der reflexion und brechung des lichtes an der grenze absorbirender krystalle[J]. Annalen Der Physik, 1887, 268(12):584-625. doi: 10.1002/andp.18872681205
    [6] DRUDE P. Bestimmung der optischen constanten der metalle[J]. Annalen Der Physik, 2010, 275(4):481-554. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/andp.18902750402
    [7] ASPNES D E. Expanding horizons:new developments in ellipsometry and polarimetry[J]. Thin Solid Films, 2004, 455-456:3-13. doi: 10.1016/j.tsf.2003.12.038
    [8] TRONSTAD L. The investigation of thin surface films on metals by means of reflected polarized light[J]. Transactions of the Faraday Society, 1933, 29(140):502-514. doi: 10.1039/tf9332900502
    [9] KENT C V, LAWSON J. A photoelectric method for the determination of the parameters of elliptically polarized light[J]. Journal of the Optical Society of America, 1937, 27(3):117-119. doi: 10.1364/JOSA.27.000117
    [10] ROTHEN A. The ellipsometer, an apparatus to measure thicknesses of thin surface films[J]. Review of Scientific Instruments, 1945, 16(2):26-30. doi: 10.1063/1.1770315
    [11] BUDDE W. Photoelectric analysis of polarized light[J]. Applied Optics, 1962, 1(3):201-205. doi: 10.1364/AO.1.000201
    [12] HAUGE P S, DILL F H. Design and operation of ETA, an automated ellipsometer[J]. IBM Journal of Research & Development, 1973, 17(6):472-489. doi: 10.1147-rd.176.0472/
    [13] HAUGE P S, DILL F H. A rotating-compensator fourier ellipsometer[J]. Optics Communications, 1975, 14(4):431-437. doi: 10.1016/0030-4018(75)90012-7
    [14] ASPNES D E, STUDNA A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J]. Physical Review B, 1983, 27(2):985-1009. doi: 10.1103/PhysRevB.27.985
    [15] JOHS B D, HE P, GREEN S E, et al.. Multiple order dispersive optics system and method of use: US, 5666201[P/OL].1997-09-09. http://digitalcommons.unl.edu/electricalengineeringfacpub/32.
    [16] THOMPSON R C, BOTTIGER J R, FRY E S. Measurement of polarized light interactions via the Mueller matrix[J]. Applied Optics, 1980, 19(8):1323-1332. doi: 10.1364/AO.19.001323
    [17] OSSIKOVSKI R, SHIRAI H, DRÉVILLON B. In situ investigation by IR ellipsometry of the growth and interfaces of amorphous silicon and related materials[J]. Thin Solid Films, 1993, 234(1-2):363-366. doi: 10.1016/0040-6090(93)90286-X
    [18] JELLISON G E, MODINE F A. Two-modulator generalized ellipsometry:experiment and calibration[J]. Applied Optics, 1997, 36(31):8184-8189. doi: 10.1364/AO.36.008184
    [19] ASPNES D E. Spectroscopic ellipsometry-past, present, and future[J]. Thin Solid Films, 2014, 571(9):334-344. http://cn.bing.com/academic/profile?id=95601ac11c563a08721adde0e0b30873&encoded=0&v=paper_preview&mkt=zh-cn
    [20] ASPNESD E, THEENTENJ B, HOTTIERF. Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry[J]. Physical Review B, 1979, 20(8):3292-3302. doi: 10.1103/PhysRevB.20.3292
    [21] AZZAM R M A.Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal[J]. Optics Letters, 1978, 2(6):148-150. doi: 10.1364/OL.2.000148
    [22] AZZAM R M A, GIARDINA K A, LOPEZ A G. Conventional and generalized Mueller-matrix ellipsometry using the four-detector photopolarimeter[J]. Optical Engineering, 1991, 30(10):1583. doi: 10.1117/12.55957
    [23] 肖国辉.多波长消光式椭偏测量技术研究[D].广州: 华南师范大学, 2009.

    XIAO G H. Study of measurement technology for multi-wavelength null ellipsometry[D]. Guangzhou: South China Normal University, 2009.(in Chinese)
    [24] 高龙.高精度椭圆偏振技术在盘垫片检测中的应用[D].哈尔滨: 哈尔滨工业大学, 2007.

    GAO L. Application of high-accuracy ellipsometry to measure magnetic disc[D]. Harbin: Harbin Institute of Technology, 2007.(in Chinese)
    [25] 罗晋生, 陈敏麒, 朱惠贤, 等.激光自动椭偏仪及其应用[J].西安交通大学学报, 1987, 21(3):61-68. http://www.cnki.com.cn/Article/CJFDTotal-XAJT198703006.htm

    LUO J SH, CHEN M Q, ZHU H X, et al.. Design of an automated laser ellipsometer and its applications[J]. Journal of Xi'an Jiaotong University, 1987, 21(3):61-68.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-XAJT198703006.htm
    [26] 朱慧贤, 罗晋生.0.5~2.0 eV红外光生自动椭偏仪的研制与应用[J].西安交通大学学报, 1993, 27(3):69-74. http://www.cnki.com.cn/Article/CJFDTotal-XAJT199303011.htm

    ZHU H X, LUO J SH. The design and application of 0.5~2.0 eV automatic infrared spectroscopic ellipsometer[J]. Journal of Xi'an Jiaotong University, 1993, 27(3):69-74.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-XAJT199303011.htm
    [27] CHEN L Y, FENG X W, SU Y, et al.. Design of a scanning ellipsometer by synchronous rotation of the polarizer and analyzer[J]. Applied Optics, 1994, 33(7):1299-1305. doi: 10.1364/AO.33.001299
    [28] 黄志明, 金世荣, 陈诗伟, 等.同时旋转起偏器和检偏器的红外椭圆偏振光谱仪研制[J].红外与毫米波学报, 1998, 17(5):321-326. doi: 10.3321/j.issn:1001-9014.1998.05.001

    HUANG ZH M, JIN SH R, CHEN SH W, et al.. Development of infrared spectroscopic ellipsometer by synchronous rotation of the polarizer and analyzer[J]. Journal of Infrared and Millimeter Waves, 1998, 17(5):321-326.(in Chinese) doi: 10.3321/j.issn:1001-9014.1998.05.001
    [29] 孟永宏, 靳刚.椭偏光学显微成像系统中的图像采集及处理技术[J].光学 精密工程, 2000, 8(4):316-320. doi: 10.3321/j.issn:1004-924X.2000.04.003

    MENG Y H, JIN G. Technique of image grabbing and processing in ellipsometric image system[J]. Opt. Precision Eng., 2000, 8(4):316-320.(in Chinese) doi: 10.3321/j.issn:1004-924X.2000.04.003
    [30] XIA G Q, ZHANG R J, CHEN Y L, et al.. New design of the variable angle infrared spectroscopic ellipsometer using double Fourier transforms[J]. Review of Scientific Instruments, 2000, 71(7):2677-2683. doi: 10.1063/1.1150674
    [31] CHEN X G, ZHANG CH W, LIU SH Y, et al.. Accurate characterization of nanoimprinted resist patterns using Mueller matrix ellipsometry[J]. Optics Express, 2014, 22(12):15165-15177. doi: 10.1364/OE.22.015165
    [32] CHEN X G, ZHANG CH W, LIU SH Y, et al.. Mueller matrix ellipsometric detection of profile asymmetry in nanoimprinted grating structures[J]. Journal of Applied Physics, 2014, 116(19):194305. doi: 10.1063/1.4902154
    [33] 李伟奇.高精度宽光谱穆勒矩阵椭偏仪研制与应用研究[D].武汉: 华中科技大学, 2016.

    LI W Q. Research on development and application of a high-precision broadband muller natrix ellipsometer[D]. Wuhan: Huazhong University of Science and Technology, 2016.(in Chinese)
    [34] FUJIWARA H. Spectroscopic Ellipsometry:Principles and Applications[M]. West Sussex:England John Wiley & Sons, 2007.
    [35] LOSURDO M, HINGERL K. Ellipsometry at the Nanoscale[M]. Berlin Heidelberg:Springer-Verlag, 2013.
    [36] HINRICHS K, EICHHORN K J. Ellipsometry of Functional Organic Surfaces and Films[M]. Berlin Heidelberg:Springer-Verlag, 2014:52.
    [37] 杨坤, 王向朝, 步扬.椭偏仪的研究进展[J].激光与光电子学进展, 2007, 44(3):43-49. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200703007

    YANG K, WANG X CH, BU Y. Research progress of ellipsometry[J]. Laser & Optoelectronics Progress, 2007, 44(3):43-49.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200703007
    [38] 吴仕梁.透明光电材料的椭偏研究[D].济南: 山东大学, 2012.

    WU SH L. Ellipsometry of transparent optoelectronic materials[D]. Jinan: Shandong University, 2012.(in Chinese)
    [39] KALIMANOVA I, ILIEVA N, GEORGIEVA M. Ellipsometry and thin films parameters measurement[C]. 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005: 472-475.
    [40] TOMPKINS H G, IRENE E A. Handbook of Ellipsometry[M]. Co-published by:Norwich, Heidelberg, Germany:Springer-Verlag GmbH & Co. KG, 2005.
    [41] ASPNES D E. Precision bounds to ellipsometer systems[J]. Applied Optics, 1975, 14(5):1131-1136. doi: 10.1364/AO.14.001131
    [42] ASPNES D E, HAUGE P S. Rotating-compensator/analyzer fixed-analyzer ellipsometer:analysis and comparison to other automatic ellipsometers[J]. Journal of the Optical Society of America, 1976, 66(9):949-954. doi: 10.1364/JOSA.66.000949
    [43] CHEN L Y, LYNCH D W. Scanning ellipsometer by rotating polarizer and analyzer[J]. Applied Optics, 1987, 26(24):5221-5228. doi: 10.1364/AO.26.005221
    [44] EL-AGEZ T M, ELTAYYAN A A E, TAYA S A. Rotating polarizer-analyzer scanning ellipsometer[J]. Thin Solid Films, 2010, 518(19):5610-5614. doi: 10.1016/j.tsf.2010.04.067
    [45] MAO P H, ZHENG Y X, CHEN Y R, et al.. Study of the new ellipsometric measurement method using integrated analyzer in parallel mode[J]. Optics Express, 2009, 17(10):8641-8650. doi: 10.1364/OE.17.008641
    [46] CHEN L Y, FENG X W, SU Y, et al.. Improved rotating analyzer-polarizer type of scanning ellipsometer[J]. Thin Solid Film, 1993, 234(1-2):385-389 doi: 10.1016/0040-6090(93)90291-V
    [47] HAUGE P S. Mueller matrix ellipsometry with imperfect compensators[J]. Journal of the Optical Society of America, 1978, 68(11):1519-1528. doi: 10.1364/JOSA.68.001519
    [48] GEHRELS T. Planets, Stars and Nebulae Studied with Photopolarimetry[M]. Tucson, Arizon:University of Arizona Press, 1974.
    [49] 陈岳立, 张荣君, 夏国强, 等.双重傅里叶变换红外椭偏光谱系统的研制[J].光学学报, 2001, 21(6):729-733. doi: 10.3321/j.issn:0253-2239.2001.06.021

    CHEN Y L, ZHANG R J, XIA G Q, et al.. Design of an infrared spectroscopic ellipsometer using double-fourier-transform method[J]. Acta Optica Sinica, 2001, 21(6):729-733.(in Chinese) doi: 10.3321/j.issn:0253-2239.2001.06.021
    [50] 冯守志.尺寸可控的硅纳米晶及硅纳米晶与二氧化硅复合薄膜的椭圆偏振光谱研究[D].上海: 复旦大学, 2007.

    FENG SH ZH. Spectroscopic ellipsoscopic study of size-controlled silicon nano-crystals and silicon nano-crystals: SiO2 composite thin film[D]. Shanghai: Fudan University, 2007.(in Chinese)
    [51] JASPERSON S N, SCHNATTERLY S E. An improved method for high reflectivity ellipsometry based on a new polarization modulation technique[J]. Review of Scientific Instruments, 1969, 40(6):761-767. doi: 10.1063/1.1684062
    [52] ADACHI S. Optical Constants of Crystalline and Amorphous Semiconductors:Numerical Data and Graphical Information[M]. Boston, MA:Springer, 1999.
    [53] LEE J, COLLINS R W, HEYD A R, et al.. Spectroellipsometry for characterization of Zn1-xCdxSe multilayered structures on GaAs[J]. Applied Physics Letters, 1996, 69(15):2273-2275. doi: 10.1063/1.117531
    [54] SERAPHIN B O. Optical Properties of Solids:New Developments[M]. American:Elsevier, 1976.
    [55] ERMAN M, THEETEN J B, CHAMBON P, et al.. Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation[J]. Journal of Applied Physics, 1984, 56(10):2664-2671. doi: 10.1063/1.333785
    [56] ASPNES D E, STUDNA A A. High precision scanning ellipsometer[J]. Applied Optics, 1975, 14(1):220-228. doi: 10.1364/AO.14.000220
    [57] BEAGLEHOLE D. Performance of a microscopic imaging ellipsometer[J]. Review of Scientific Instruments, 1988, 59(12):2557-2559. doi: 10.1063/1.1139897
    [58] 游海洋, 贾建虎, 陈剑科, 等.面阵CCD探测的全自动椭圆偏振光谱系统研究[J].红外与毫米波学报, 2003, 22(1):45-50. doi: 10.3321/j.issn:1001-9014.2003.01.010

    YOU H Y, JIA J H, CHEN J K, et al.. The study of a auto ellipsometer system by using a two-dimensional CCD array detector[J]. Journal of Infrared and Millimeter Waves, 2003, 22(1):45-50.(in Chinese) doi: 10.3321/j.issn:1001-9014.2003.01.010
    [59] JIN G, JANSSON R, ARWIN H. Imaging ellipsometry revisited:developments for visualization of thin transparent layers on silicon substrates[J]. Review of Scientific Instruments, 1996, 67(8):2930-2936. doi: 10.1063/1.1147074
    [60] SCHUBERT M, RHEINLÄNDER B, WOOLLAM J A, et al.. Extension of rotating-analyzer ellipsometry to generalized ellipsometry:determination of the dielectric function tensor from uniaxial TiO2[J]. Journal of the Optical Society of America A, 1996, 13(4):875-883. doi: 10.1364/JOSAA.13.000875
    [61] CHEN CH, AN I, FERREIRA G M, et al.. Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle[J]. Thin Solid Films, 2004, 455-456(1):14-23. http://cn.bing.com/academic/profile?id=e1af353b3c3e7277079f693c13c7a4db&encoded=0&v=paper_preview&mkt=zh-cn
    [62] JELLISON G E, MODINE F A. Two-modulator generalized ellipsometry:theory[J]. Applied Optics, 1997, 36(31):8190-8198. doi: 10.1364/AO.36.008190
    [63] JELLISON G E, HUNN J D, ROULEAU C M. Normal-incidence generalized ellipsometry using the two-modulator generalized ellipsometry microscope[J]. Applied Optics, 2006, 45(22):5479-5488. doi: 10.1364/AO.45.005479
    [64] JELLISON JR G E, HOLCOMB D E, HUNN J D, et al.. Generalized ellipsometry in unusual configurations[J]. Applied Surface Science, 2006, 253(1):47-51. doi: 10.1016/j.apsusc.2006.05.120
    [65] 张冬旭.几种信息功能薄膜材料的椭圆偏振光谱研究[D].上海: 复旦大学, 2014.

    ZHANG D X. Optical properties of several kinds of information films studied by spectroscopic ellipsometry[D]. Shanghai: Fudan University, 2014.(in Chinese)
    [66] KRAVETS V G, GRIGORENKO A N, NAIR R R, et al.. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption[J]. Physical Review B, 2010, 81(15):155413. doi: 10.1103/PhysRevB.81.155413
    [67] SCHULZ B, CHAN D, BÄCKSTRÖM J, et al.. Spectroscopic ellipsometry on biological materials-investigation of hydration dynamics and structural properties[J]. Thin Solid Films, 2004, 455-456(1):731-734. http://cn.bing.com/academic/profile?id=0f94bd0b2cda683fc127e3bdf5312492&encoded=0&v=paper_preview&mkt=zh-cn
    [68] WOOLLAM J A. Ellipsometry solutions: Ellipsometry data analysis[EB/OL]. https://www.jawoollam.com/resources/ellipsometry-tutorial/ellipsometry-data-analysis.
    [69] HILFIKER J N, SINGH N, TIWALD T, et al.. Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry[J]. Thin Solid Films, 2008, 516(22):7979-7989. doi: 10.1016/j.tsf.2008.04.060
    [70] BASU S R, MARTIN L W, CHU Y H, et al.. Photoconductivity in BiFeO3 thin films[J]. Applied Physics Letters, 2008, 92(9):091905. doi: 10.1063/1.2887908
    [71] PRICE J, BERSUKER G, LYSAGHT P S. Identification of electrically active defects in thin dielectric films by spectroscopic ellipsometry[J]. Journal of Applied Physics, 2012, 111(4):043507-1-043507-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a139f74f40a5fb2ca82ec84b0c3f80b
    [72] XU J P, ZHANG R J, ZHANG Y, et al. The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry[J]. Physical Chemistry Chemical Physics PCCP, 2016, 18(4):3316-3321. doi: 10.1039/C5CP05592J
    [73] LI D H, ZHENG H, WANG Z Y, et al.. Dielectric functions and critical points of crystalline WS2 ultrathin films with tunable thickness[J]. Physical Chemistry Chemical Physics, 2017, 19(19):12022-12031. doi: 10.1039/C7CP00660H
    [74] DRUDE P. Zur elektronentheorie der metalle; Ⅱ.Teil. Galvanomagnetische und thermomagnetische effecte[J]. Annalen Der Physik, 1900, 308(11):369-402. doi: 10.1002/andp.19003081102
    [75] LORENTZ H A. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat[M]. New York:G.E. Stechert & Co. 1909.
    [76] JELLISON JR G E, MODINE F A. Parameterization of the optical functions of amorphous materials in the interband region[J]. Applied Physics Letters, 1996, 69(3):371-373. doi: 10.1063/1.118064
    [77] PRICE J, HUNG P Y, RHOAD T, et al.. Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model[J]. Applied Physics Letters, 2004, 85(10):1701-1703. doi: 10.1063/1.1784889
    [78] ZHAO D D, CAI Q Y, ZHENG Y X, et al.. Optical constants of e-beam evaporated and annealed Nb2O5 thin films with varying thickness[J]. Journal of Physics D:Applied Physics, 2016, 49(26):265304. doi: 10.1088/0022-3727/49/26/265304
    [79] ESRO M, VOURLIAS G, SOMERTON C, et al.. High-mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics[J]. Advanced Functional Materials, 2015, 25:134-141. doi: 10.1002/adfm.201402684
    [80] JANSSON R, ZANGOOIE S, ARWIN H, et al.. Characterization of 3C-SiC by spectroscopic ellipsometry[J]. Physica Status Solidi B, 2015, 218(1):r1-r2. doi: 10.1002/(SICI)1521-3951(200003)218:13.0.CO;2-0
    [81] ZHANG D X, ZHENG Y X, CAI Q Y, et al.. Thickness-dependence of optical constants for Ta2O5, ultrathin films[J]. Applied Physics A, 2012, 108(4):975-979. doi: 10.1007/s00339-012-7007-2
    [82] ZHANG D X, SHEN B, ZHENG Y X, et al.. Evolution of optical properties of thin film from solid to liquid studied by spectroscopic ellipsometry and ab initio calculation[J]. Applied Physics Letters, 2014, 104(12):121907. doi: 10.1063/1.4869722
    [83] STEIRER K X, NDIONE P F, WIDJONARKO N E, et al.. Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers[J]. Advanced Energy Materials, 2011, 1(5):813-820. doi: 10.1002/aenm.201100234
    [84] GHOSH M, PRADIPKANTI L, RAI V, et al.. Confined water layers in graphene oxide probed with spectroscopic ellipsometry[J]. Applied Physics Letters, 2015, 106(24):241902. doi: 10.1063/1.4922731
    [85] YANG L, ZHENG Y X, YANG S D, et al.. Ellipsometric study on temperature dependent optical properties of topological bismuth film[J]. Applied Surface Science, 2017, 421(Part B):899-904. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=146271fb2df48be51bb1fea1888e98da
    [86] WANG Z Y, ZHANG R J, LU H L, et al.. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition[J]. Nanoscale Research Letters, 2015, 10(1):46. doi: 10.1186/s11671-015-0757-y
    [87] 李彤, 张美玲, 王菲, 等.键合型掺铒纳米晶-聚合物波导放大器的制备[J].中国光学, 2017, 10(2):219-225. http://www.chineseoptics.net.cn/CN/abstract/abstract9492.shtml

    LI T, ZHANG M L, WANG F, et al.. Fabrication of optical waveguide amplifiers based on bonding-type NaYF4:Er nanoparticles-polymer[J]. Chinese Optics, 2017, 10(2):219-225.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9492.shtml
    [88] JIANG J H, ZHU L P, ZHU L J, et al.. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(23):14180-14187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7462435ef105d8d9bec71072717e919e
    [89] FOROUHI A R, BLOOMER I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics[J]. Physical Review B Condensed Matter, 1986, 34(10):7018-7026. doi: 10.1103/PhysRevB.34.7018
    [90] FOROUHI A R, BLOOMER I. Optical properties of crystalline semiconductors and dielectrics[J]. Physical Review B, 1988, 38(3):1865-1874. doi: 10.1103/PhysRevB.38.1865
    [91] ZHENG H, ZHANG R J, XU J P, et al.. Thickness-dependent optical constants and annealed phase transitions of ultrathin ZnO films[J]. Journal of Physical Chemistry C, 2016, 120(39):22532-22538. doi: 10.1021/acs.jpcc.6b06173
    [92] CHRYSICOPOULOU P, DAVAZOGLOU D, TRAPALIS C, et al.. Optical properties of very thin(< 100 nm) sol-gel TiO2 films[J]. Thin Solid Films, 1998, 323(1-2):188-193. doi: 10.1016/S0040-6090(97)01018-3
    [93] HEITMANN J, MVLLER F, YI L X, et al.. Excitons in Si nanocrystals:confinement and migration effects[J]. Physical Review B, 2004, 69(19):195309. doi: 10.1103/PhysRevB.69.195309
    [94] ZACHARIAS M, HILLER D, HARTEL A, et al.. Defect engineering of Si nanocrystal interfaces[J]. Physica Status Solidi A, 2012, 209(12):2449-2454. doi: 10.1002/pssa.201200734
    [95] SHI Y J, ZHANG R J, ZHENG H, et al.. Optical constants and band gap evolution with phase transition in sub-20-nm-thick TiO2 films prepared by ALD[J]. Nanoscale Research Letters, 2017, 12(1):243. doi: 10.1186/s11671-017-2011-2
    [96] LI D H, ZHAI C H, ZHOU W C, et al.. Effects of bilayer thickness on the morphological, optical, and electrical properties of Al2O3/ZnO nanolaminates[J]. Nanoscale Research Letters, 2017, 12(1):563. doi: 10.1186/s11671-017-2328-x
    [97] LOU Y Y, WANG L J, MA H L, et al.. Ellipsometric study of CVD diamond films prepared with various grain sizes[J]. Proceedings of SPIE, 2008, 6984:698419. doi: 10.1117/12.792395
    [98] LÖPER P, STUCKELBERGER M, NIESEN B, et al.. Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry[J]. Journal of Physical Chemistry Letters, 2015, 6(1):66-71. doi: 10.1021/jz502471h
    [99] XIE Z A, LIU SH F, QIN L X, et al.. Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry[J]. Optical Materials Express, 2015, 5(1):29-43. doi: 10.1364/OME.5.000029
    [100] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi, 1966, 15(2):627-637. doi: 10.1002/pssb.19660150224
    [101] WANG Z Y, YUAN S J, LI D H, et al.. Influence of hydration water on CH3NH3PbI3 perovskite films prepared through one-step procedure[J]. Optics Express, 2016, 24(22):A1431-A1443. doi: 10.1364/OE.24.0A1431
    [102] SHIRAYAMA M, KADOWAKI H, MIYADERA T, et al.. Optical transitions in hybrid perovskite solar cells:ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3[J]. Physical Review Applied, 2016, 5(1):014012. doi: 10.1103/PhysRevApplied.5.014012
    [103] IHLEFELD J F, PODRAZA N J, LIU Z K, et al.. Optical band gap of BiFeO3 grown by molecular-beam epitaxy[J]. Applied Physics Letters, 2008, 92(14):142908. doi: 10.1063/1.2901160
    [104] CHAIBI F, JEMAI R, AGUAS H, et al.. The effects of argon and helium dilution in the growth of nc-Si:H thin films by plasma-enhanced chemical vapor deposition[J]. Journal of Materials Science, 2018, 53(5):3672-3681. doi: 10.1007/s10853-017-1791-1
    [105] ORDAL M A, LONG L L, BELL R J, et al.. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7):1099-1119. doi: 10.1364/AO.22.001099
    [106] HU E T, CAI Q Y, ZHANG R J, et al.. Effective method to study the thickness-dependent dielectric functions of nanometal thin film[J]. Optics Letters, 2016, 41(21):4907-4910. doi: 10.1364/OL.41.004907
    [107] ETCHEGOIN P G, LERU E C, MEYER M. An analytic model for the optical properties of gold[J]. Journal of Chemical Physics, 2006, 125(16):164705. doi: 10.1063/1.2360270
    [108] BRUGGEMAN D A G. Calculation of various physics constants in heterogenous substances I.dielectricity constants and conductivity of mixed bodies from isotropic substances[J]. Annalen der Physik, 1935, 27(7):636-664..
    [109] THEETEN J B, ASPNES D E. The determination of interface layers by spectroscopic ellipsometry[J]. Thin Solid Films, 1979, 60(2):183-192. doi: 10.1016/0040-6090(79)90188-3
    [110] YANG SH D, YANG L, ZHENG Y X, et al.. Structural-dependent optical properties of self-organized Bi2Se3 nanostructures:from nanocrystals to nanoflakes[J]. ACS Applied Materials & Interfaces, 2017, 9(34):29295-29301. doi: 10.1021/acsami.7b08834
    [111] ZHANG R J, CHEN Y M, LU W J, et al.. Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix[J]. Applied Physics Letters, 2009, 95(16):161109. doi: 10.1063/1.3254183
    [112] XU J P, ZHANG R J, CHEN Z H, et al.. Optical properties of epitaxial BiFeO3 thin film grown on SrRuO3-buffered SrTiO3 substrate[J]. Nanoscale Research Letters, 2014, 9(1):188. doi: 10.1186/1556-276X-9-188
    [113] TAKEUCHI K, ADACHI S. Optical properties of β-Sn films[J]. Journal of Applied Physics, 2009, 105(7):073520. doi: 10.1063/1.3106528
    [114] LOSURDO M. Applications of ellipsometry in nanoscale science:needs, status, achievements and future challenges[J]. Thin Solid Films, 2011, 519(9):2575-2583. doi: 10.1016/j.tsf.2010.11.066
    [115] 乔自文, 高炳荣, 陈岐岱, 等.飞秒超快光谱技术及其互补使用[J].中国光学, 2014, 7(4):588-599. http://www.chineseoptics.net.cn/CN/abstract/abstract9168.shtml

    QIAO Z W, GAO B R, CHEN Q D, ,et al.. Ultrafast spectroscopy technique and their complementary usages[J]. Chinese Optics, 2014, 7(4):588-599.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9168.shtml
    [116] 潘新宇, 龚旗煌.超快光声光谱技术的进展和前景[J].物理, 2002, 31(10):647-650. doi: 10.3321/j.issn:0379-4148.2002.10.006

    PAN X Y, GONG Q H. Progress and prospects of ultrafast photoacoustic spectroscopy[J]. Physics, 2002, 31(10):647-650.(in Chinese) doi: 10.3321/j.issn:0379-4148.2002.10.006
    [117] CHE M, VÉDRINE J C. Characterization of Solid Materials and Heterogeneous Catalysts:From Structure to Surface Reactivity[M]. Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
    [118] 牛晓龙, 乔松, 张莉沫, 等.利用光致发光技术研究多晶硅片厚度对太阳电池性能的影响[J].光电子技术, 2016, 36(1):55-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjs201601011

    NIU X L, QIAO S, ZHANG L M, ,et al.. Application of photoluminescence for investigating the influence of wafer thickness on the performance of multicrystalline silicon solar cell[J]. Optoelectronic Technology, 2016, 36(1):55-58.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjs201601011
    [119] HOMAN S B, SANGWAN V K, BALLA I, et al.. Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic pentacene-MoS2 van der waals heterojunction[J]. Nano Letters, 2017, 17(1):164-169. doi: 10.1021/acs.nanolett.6b03704
    [120] CEBALLOS F, BELLUS M Z, CHIU H Y, et al.. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der waals heterostructure[J]. ACS Nano, 2014, 8(12):12717-12724. doi: 10.1021/nn505736z
    [121] HE J Q, KUMAR N, BELLUS M Z, et al.. Electron transfer and coupling in graphene-tungsten disulfide van der waals heterostructures[J]. Nature Communications, 2014, 5(1):5622. doi: 10.1038/ncomms6622
    [122] SARICIFTCI N S. Primary Photoexcitations in Conjugated Polymers:Molecular Exciton Versus Semiconductor Band Model[M].Singapore:World Scientific Publishing Co. Pte. Ltd, 1997.
    [123] MAO P H, ZHENG Y X, CAI Q Y, et al.. Approach to error analysis and reduction for rotating-polarizer-analyzer ellipsometer[J]. Journal of the Physical Society of Japan, 2012, 81(12):124003. doi: 10.1143/JPSJ.81.124003
    [124] DEFRANOUX C, EMERAUD T, BOURTAULT S, et al.. Infrared spectroscopic ellipsometry applied to the characterization of ultra shallow junction on silicon and SOI[J]. Thin Solid Films, 2004, 455-456:150-156. doi: 10.1016/j.tsf.2004.02.008
    [125] COBET C, WILMERS K, WETHKAMP T, et al.. Optical properties of SiC investigated by spectroscopic ellipsometry from 3.5 to 10 eV[J]. Thin Soild Films, 2000, 364(1-2):111-113.. doi: 10.1016/S0040-6090(99)00893-7
    [126] 王珣, 金春水, 匡尚奇, 等.极紫外光学器件辐照污染检测技术[J].中国光学2014, 7(1):79-88. http://www.chineseoptics.net.cn/CN/abstract/abstract9099.shtml

    WANG X, JIN CH SH, KUANG SH Q, et al.. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics, 2014, 7(1):79-88.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9099.shtml
    [127] HLINKA J, OSTAPCHUK T, NUZHNYY D, et al.. Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal BaTiO3[J]. Physical Review Letters, 2008, 101(16):167402. doi: 10.1103/PhysRevLett.101.167402
    [128] HE Y ZH, UNG B S Y, PARROTT E P J, et al.. Freeze-thaw hysteresis effects in terahertz imaging of biomedical tissues[J]. Biomedical Optics Express, 2016, 7(11):4711-4717. doi: 10.1364/BOE.7.004711
    [129] CHEON H, YANG H J, LEE S H, et al.. Terahertz molecular resonance of cancer DNA[J]. Scientific Reports, 2016, 6:37103. doi: 10.1038/srep37103
    [130] FAN SH T, UNG B S Y, PARROTT E P J, et al.. In vivo terahertz reflection imaging of human scars during and after the healing process[J]. Journal of Biophotonics, 2016, 10(9):1143-1151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/jbio.201600171
    [131] BAIERL S, HOHENLEUTNER M, KAMPFRATH T, et al.. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 2016, 10(11):715-718. doi: 10.1038/nphoton.2016.181
    [132] MUKAI Y, HIRORI H, YAMAMOTO T, et al.. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator[J]. Applied Physics Letters, 2014, 105(2):022410. doi: 10.1063/1.4890475
    [133] SOTOME M, KIDA N, HORIUCHI S, et al.. Visualization of ferroelectric domains in a hydrogen-bonded molecular crystal using emission of terahertz radiation[J]. Applied Physics Letters, 2014, 105(4):041101. doi: 10.1063/1.4890939
    [134] HOFMANN T, HERZINGER C M, BOOSALIS A, et al.. Variable-wavelength frequency-domain terahertz ellipsometry[J]. Review of Scientific Instruments, 2010, 81(2):023101. doi: 10.1063/1.3297902
    [135] CHEN X Q, PARROTT E P J, HUANG ZH, et al.. Robust and accurate terahertz time-domain spectroscopic ellipsometry[J]. Photonics Research, 2018, 6(8):768-775. doi: 10.1364/PRJ.6.000768
    [136] KÜHNE P, ARMAKAVICIUS N, STANISHEV V, et al.. Advanced terahertz frequency-domain ellipsometry instrumentation for in situ and ex situ applications[J]. IEEE Transactions on Terahertz Science & Technology, 2018, 8(3):257-270. http://cn.bing.com/academic/profile?id=33f6768770d990413e2fac26c732bec7&encoded=0&v=paper_preview&mkt=zh-cn
    [137] VAUPEL M, EING A GREULICH K O, et al.. Microarray Technology and Its Applications:Marker-free Detection on Microarrays[M]. Gemany:Springer, 2004.
    [138] POKSINSKI M, ARWIN H. Protein monolayers monitored by internal reflection ellipsometry[J]. Thin Solid Films, 2004, 455-456:716-721. doi: 10.1016/j.tsf.2004.01.037
    [139] KARLSSON L M, SCHUBERT M, ASHKENOV N, ,et al.. Protein adsorption in porous silicon gradients monitored by spatially-resolved spectroscopic ellipsometry[J]. Thin Solid Films, 2004, 455-456:726-730. doi: 10.1016/j.tsf.2004.01.062
    [140] GARCIA-CAUREL E, NGUYEN J, SCHWARTZ L, et al.. Application of FTIR ellipsometry to detect and classify microorganisms[J]. Thin Solid Films, 2004, 455-456:722-725. doi: 10.1016/j.tsf.2004.02.005
    [141] LIN C H, CHEN H L, CHAO W CH, et al.. Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis[J]. Microelectronic Engineering, 2006, 83(4-9):1798-1804. doi: 10.1016/j.mee.2006.01.135
    [142] PÁPA Z, CSONTOS J, SMAUSZ T, et al.. Spectroscopic ellipsometric investigation of graphene and thin carbon films from the point of view of depolarization effects[J]. Applied Surface Science, 2017, 421(B):714-721. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=53a7bcfacd84c4d6ef23b235ca069fad
    [143] AL-HAZMI F S, BEALL G W, AL-GHAMDI A A, et al.. Raman and ellipsometry spectroscopic analysis of graphene films grown directly on Si substrate via CVD technique for estimating the graphene atomic planes number[J]. Journal of Molecular Structure, 2016, 1118:275-278. doi: 10.1016/j.molstruc.2016.04.028
    [144] 刘洪兴, 张巍, 巩岩.光栅参数测量技术研究进展[J].中国光学, 2011, 4(2):103-110. doi: 10.3969/j.issn.2095-1531.2011.02.002

    LIU H X, ZHANG W, GONG Y. Research progress on grating parameter measurement technology[J]. Chinese Optics, 2011, 4(2):103-110.(in Chinese) doi: 10.3969/j.issn.2095-1531.2011.02.002
    [145] BANON J P, NESSE T, KILDEMO M, et al.. Critical dimension metrology of a plasmonic photonic crystal based on Muller matrix ellipsometry and the reduced Rayleigh equation[J]. Optics Letters, 2017, 42(13):2631-2634. doi: 10.1364/OL.42.002631
    [146] 陈修国, 袁奎, 杜卫超, 等.基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量[J].物理学报, 2016, 65(7):070703. http://d.old.wanfangdata.com.cn/Periodical/wlxb201607008

    CHEN X G, YUAN K, DU W CH, et al.. Large-scale nanostructure metrology using Muellermatrix imaging ellipsometry[J]. Acta Physica Sinica, 2016, 65(7):070703.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201607008
    [147] 宋平.磁光椭偏仪的研究[D].济南: 山东大学, 2011.

    SONG P. Study of magneto-optical Ellipsometry[D]. Jinan: Shandong University, 2011.(in Chinese)
    [148] 王晓.纳米尺度磁性薄膜材料的磁光特性研究[D].济南: 山东大学, 2014.

    WANG X. Characterization of magneto-optical properties of nano-scale magnetic thin film[D]. Jinan: Shandong University, 2014.(in Chinese)
  • 加载中
图(39) / 表(1)
计量
  • 文章访问数:  925
  • HTML全文浏览量:  158
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-04
  • 修回日期:  2018-07-27
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回