留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学无创血糖浓度检测方法的研究进展

郭帅 苏杭 黄星灿 刘剑

郭帅, 苏杭, 黄星灿, 刘剑. 光学无创血糖浓度检测方法的研究进展[J]. 中国光学(中英文), 2019, 12(6): 1235-1248. doi: 10.3788/CO.20191206.1235
引用本文: 郭帅, 苏杭, 黄星灿, 刘剑. 光学无创血糖浓度检测方法的研究进展[J]. 中国光学(中英文), 2019, 12(6): 1235-1248. doi: 10.3788/CO.20191206.1235
GUO Shuai, SU Hang, HUANG Xing-can, LIU Jian. Research progress in optical methods for noninvasive blood glucose detection[J]. Chinese Optics, 2019, 12(6): 1235-1248. doi: 10.3788/CO.20191206.1235
Citation: GUO Shuai, SU Hang, HUANG Xing-can, LIU Jian. Research progress in optical methods for noninvasive blood glucose detection[J]. Chinese Optics, 2019, 12(6): 1235-1248. doi: 10.3788/CO.20191206.1235

光学无创血糖浓度检测方法的研究进展

doi: 10.3788/CO.20191206.1235
基金项目: 

国家自然科学基金资助项目 61801256

山东省重点研发计划资助项目 2018GGX109016

山东省自然科学基金 ZR2019MEE051

北京市自然科学基金 4182075

详细信息
    作者简介:

    郭帅(1993—), 男, 山西朔州人, 硕士研究生, 2016年于大连理工大学获得学士学位, 主要从事智能光学分析仪器开发方面的研究。E-mail:gxsld@foxmail.com

    刘剑(1977—), 男, 山东莱芜人, 博士, 副教授, 2008年于中国科学院电子学研究所获得博士学位, 主要从事生物医学传感与检测方面的研究。E-mail:lj@sdu.edu.cn

  • 中图分类号: R318.51

Research progress in optical methods for noninvasive blood glucose detection

Funds: 

Natural Science Foundation of China 61801256

Key Research and Development Projects of Shandong Province 2018GGX109016

Shandong Natural Science Foundation ZR2019MEE051

Natural Science Foundation of Beijing 4182075

More Information
  • 摘要: 连续监测血糖浓度是控制糖尿病及其并发症的前提,无创伤性血糖浓度检测方法备受关注。近几十年来,随着测量精度的不断提高,基于光学的无创伤性血糖浓度检测方法呈现出巨大发展潜力,有望在未来实现临床应用。本文详细介绍了偏振光旋光法、光学相干断层成像法、红外光谱法等主流光学无创血糖检测方法,重点对其基本原理、测量优势、测量精度、存在问题与可能解决方法等进行了综述和分析,对比发现红外光谱法在测量精度方面具有明显优势。最后指出未来还需从提高仪器信噪比、消除背景干扰以及建立更加普适的校正模型等方面展开研究。

     

  • 图 1  光纤式迈克尔逊干涉仪结构示意图[37]

    Figure 1.  Structural schematic of fiber-optic Michelson interferometer[37]

    图 2  红外光谱法原理图[46]

    Figure 2.  Principle schematic of detection method of infrared spectroscopy[46]

    图 3  通过ATR-FTIR获得的40~400 mg/dL葡萄糖溶液中红外光谱图[16]

    Figure 3.  Mid-infrared spectra for nine aqueous glucose concentrations between 40 and 400 mg/dL obtained by ATR-FTIR spectroscopy[16]

    图 4  受试者手掌散射光谱图(a)及预测血糖浓度曲线与预期血糖浓度曲线对比(b)[58]

    Figure 4.  Spectra of backscattered light from the palm of a human subject(a); comparison between the predicted and the expected blood glucose concentrations(b)[58]

    图 5  光声光谱法系统示意图[23]

    Figure 5.  Schematic of photoacoustic spectroscopy system[23]

    表  1  光学无创血糖浓度检测的精度

    Table  1.   The accuracies of optical methods for noninvasive blood glucose detection  SEP:mg/dL

    Optical methods Glucosesolution Bloodserum Blood plasma Livingrabbit/pig Humansubject
    Polarimetry Stationary:4.30[35] 20.63(SD)[32] 11.66(MARD)[30]
    Moving:13.50[35]
    OCT 17.00[10]Note1 8.21(RMSE)[38]
    NIR spectroscopy 8.10[48] 9.00[47] 20.38[49] 10.00(RMSE)[78]
    Mid-IR spectroscopy 3.50(RMSE)[17] 7.38(SD)[79] 17.10[80] 9.60[81]
    Raman spectroscopy 20.71(SD)[18] 7.80%±1.80%[19]Note2
    Photoacoustic spectroscopy 12.14(RMSE)[82] 10.97(RMSE)[83]
          Note 1:Minimum prediction uncertainty is 17.00 mg/dL; Note 2:MAE of blood glucose is 7.8%±1.8%.
    下载: 导出CSV
  • [1] CHO N H. IDF diabetes atlas(eighth edition2017)[EB/OL].[2018-08-06]. https://www.idf.org/e-library/welcome.html.
    [2] DANAEI G, FINUCANE M M, LU Y, et al..National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980:systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants[J]. The Lancet, 2011, 378(9785):31-40. doi: 10.1016/S0140-6736(11)60679-X
    [3] 陈玮, 陈裕泉.非图案化法制备柔性连续葡萄糖监测传感器[J].分析化学, 2016, 44(4):654-659. http://d.old.wanfangdata.com.cn/Periodical/fxhx201604022

    CHEN W, CHEN Y Q. Fabrication of flexible continuous glucose monitoring sensor by non-patterning method[J]. Chinese Journal of Analytical Chemistry, 2016, 44(4):654-659.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201604022
    [4] 范一强, 高峰, 王玫, 等.可穿戴式微流控芯片在体液检测和药物递送中的研究进展[J].分析化学, 2017, 45(3):455-463. http://d.old.wanfangdata.com.cn/Periodical/fxhx201703027

    FAN Y Q, GAO F, WANG M, et al.. Recent development of wearable microfluidics applied in body fluid testing and drug delivery[J]. Chinese Journal of Analytical Chemistry, 2017, 45(3):455-463.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201703027
    [5] LIU J, JIANG L Y, LIU H M, et al.. A bifunctional biosensor for subcutaneous glucose monitoring by reverse iontophoresis[J]. Journal of Electroanalytical Chemistry, 2011, 660(1):8-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ebe76ec73eba14fc592f64beca3a4d0
    [6] PLEITEZ M, VON LILIENFELD-TOAL H, MÄNTELE W. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers(QCL):establishing a new approach to non invasive glucose measurement[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2012, 85(1):61-65. doi: 10.1016/j.saa.2011.09.007
    [7] BABA J S, CAMERON B D, COTE G L. Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye[J]. Journal of Biomedical Optics, 2002, 7(3):321-328. doi: 10.1117/1.1484163
    [8] CAMERON B D, GORDE H W, SATHEESAN B, et al.. The use of polarized laser light through the eye for noninvasive glucose monitoring[J]. Diabetes Technology & Therapeutics, 1999, 1(2):135-143. http://cn.bing.com/academic/profile?id=37b485c98ed97b68473c03c9cab0d79c&encoded=0&v=paper_preview&mkt=zh-cn
    [9] LARIN K V, ELEDRISI M S, MOTAMEDI M, et al.. Noninvasive blood glucose monitoring with optical coherence tomography:a pilot study in human subjects[J]. Diabetes Care, 2002, 25(12):2263-2267. doi: 10.2337/diacare.25.12.2263
    [10] KURANOV R V, SAPOZHNIKOVA V V, PROUGH D S, et al..Prediction capability of optical coherence tomography for blood glucose concentration monitoring[J]. Journal of Diabetes Science and Technology, 2007, 1(4):470-477. doi: 10.1177/193229680700100404
    [11] LARIN K V, MOTAMEDI M, ASHITKOV T V, et al.. Specificity of noninvasive blood glucose sensing using optical coherence tomography technique:a pilot study[J]. Physics in Medicine and Biology, 2003, 48(10):1371-1390. doi: 10.1088/0031-9155/48/10/310
    [12] HE R Y, WEI H J, GU H M, et al.. Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography:a pilot study[J]. Journal of Biomedical Optics, 2012, 17(10):101513. doi: 10.1117/1.JBO.17.10.101513
    [13] MARUO K, OOTA T, TSURUGI M, et al.. Noninvasive near-infrared blood glucose monitoring using a calibration model built by a numerical simulation method:trial application to patients in an intensive care unit[J]. Applied Spectroscopy, 2006, 60(12):1423-1431. doi: 10.1366/000370206779321508
    [14] RAMASAHAYAM S, ARORA L, CHOWDHURY S R, et al.. FPGA based system for blood glucose sensing using photoplethysmography and online motion artifact correction using adaline[C]. Proceedings of the 9th International Conference on Sensing Technology, IEEE, 2015.
    [15] MENDELSON Y, CLERMONT A C, PEURA R A, et al..Blood glucose measurement by multiple attenuated total reflection and infrared absorption spectroscopy[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(5):458-465. doi: 10.1109/10.55636
    [16] MEINKE M, MÜLLER G J, ALBRECHT H, et al.. Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements[J]. Journal of Biomedical Optics, 2008, 13(1):014021. doi: 10.1117/1.2870093
    [17] YU S L, LI D C, CHONG H, et al.. Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy[J]. Optics and Lasers in Engineering, 2014, 55:78-83. doi: 10.1016/j.optlaseng.2013.10.016
    [18] GOETZ M J, COTÉ G L, ERCKENS R, et al.. Application of a multivariate technique to Raman spectra for quantification of body chemicals[J]. IEEE Transactions on Biomedical Engineering, 1995, 42(7):728-731. doi: 10.1109/10.391172
    [19] ENEJDER A M K, SCECINA T G, OH J, et al..Raman spectroscopy for noninvasive glucose measurements[J]. Journal of Biomedical Optics, 2005, 10(3):031114. doi: 10.1117/1.1920212
    [20] RUSSELL R J, PISHKO M V, GEFRIDES C C, et al.. A fluorescence-based glucose biosensor using concanavalin a and dextran encapsulated in a poly(ethylene glycol) hydrogel[J]. Analytical Chemistry, 1999, 71(15):3126-3132. doi: 10.1021/ac990060r
    [21] BALLERSTADT R, EVANS C, GOWDA A, et al.. In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring[J]. Diabetes Technology & Therapeutics, 2006, 8(3):296-311. doi: 10.1089/dia.2006.8.296
    [22] REN ZH, LIU G D, HUANG ZH. Determination of glucose concentration based on pulsed laser induced photoacoustic technique and least square fitting algorithm[J]. Proceedings of SPIE, 2015, 9619:96190M. doi: 10.1117/12.2190601
    [23] ALAROUSU E, HAST J T, KINNUNEN M T, et al..Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques[J]. Proceedings of SPIE, 2004, 5474:33-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026704761
    [24] 陶曾, 王敏.基于超声调制光信号技术无创检查葡萄糖浓度[J].科技资讯, 2014, 12(11):20-21. doi: 10.3969/j.issn.1672-3791.2014.11.014

    TAO Z, WANG M. Noninvasive detection of glucose concentration based on ultrasound-modulated light signal technology[J]. Science & Technology Information, 2014, 12(11):20-21.(in Chinese) doi: 10.3969/j.issn.1672-3791.2014.11.014
    [25] SRIVASTAVA A, CHOWDHURY M K, SHARMA S, et al.. Measurement of glucose by using modulating ultrasound with optical technique in normal and diabetic human blood serum[C]. Proceedings of 2014 IEEE International Conference on Advances in Engineering & Technology Research, IEEE, 2014.
    [26] CHOWDHURY M K, SRIVASTAVA A, SHARMA N, et al..Noninvasive blood glucose measurement utilizing a newly designed system based on modulated ultrasound and infrared light[J]. International Journal of Diabetes in Developing Countries, 2016, 36(4):439-448. doi: 10.1007/s13410-015-0459-0
    [27] MARCH W, ENGERMAN R, RABINOVITCH B. Optical monitor of glucose[J]. Transactions-American Society for Artificial Internal Organs, 1979, 25(1):28-31. doi: 10.1097/00002480-197902500-00006
    [28] CHOU CH E, HAN CH Y, KUO W CH, et al..Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter[J]. Applied Optics, 1998, 37(16):3553-3557. doi: 10.1364/AO.37.003553
    [29] CAMERON B D, BABA J S, COTÉ G L. Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor[J]. Diabetes Technology & Therapeutics, 2001, 3(2):201-207. http://cn.bing.com/academic/profile?id=38351d7ab01be0a0d32d45f962355567&encoded=0&v=paper_preview&mkt=zh-cn
    [30] PIRNSTILL C W, MALIK B H, GRESHAM V C, et al.. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion[J]. Diabetes Technology & Therapeutics, 2012, 14(9):819-827. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b001418e882a5c2684b11a559c6c7694
    [31] WAN Q J. Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence[D]. College Station: Texas A&M University, 2005.
    [32] 王洪.基于偏振光原理的无创血糖测量技术及其实验研究[D].重庆: 第三军医大学, 2009.

    WANG H. Non-invasive blood glucose measurement techniques based on the principle of polarized light and its experimental study[D]. Chongqing: Third Military Medical University, 2009.(in Chinese)
    [33] MALIK B H, COTÉ G L. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring[J]. Journal of Biomedical Optics, 2010, 15(1):017002. doi: 10.1117/1.3290819
    [34] GRUNDEN D T, PIRNSTILL C W, COTÉ G L. High-speed dual-wavelength optical polarimetry for glucose sensing[J]. Proceedings of SPIE, 2014, 8951:895111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214510501
    [35] 余振芳.光学无创血糖检测技术研究[D].成都: 电子科技大学, 2016.

    YU ZH F. Research on optical noninvasive glucose measurement technology[D]. Chengdu: University of Electronic Science and Technology of China, 2016.(in Chinese)
    [36] PHAN Q H, LO Y L. Stokes-Mueller matrix polarimetry system for glucose sensing[J]. Optics and Lasers in Engineering, 2017, 92:120-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e7cf4a1537f29485779fbfe0558bf7a
    [37] 苏亚.光学相干层析无创血糖检测及其影响因素研究[D].天津: 天津大学, 2014.

    SU Y. The studies of noninvasive blood glucose monitoring using optical coherence tomography and factors affecting its accuracy[D]. Tianjin: Tianjin University, 2014.(in Chinese)
    [38] 付磊, 苏亚, 李果华, 等.广义极大似然估计在OCT无创血糖监测中的应用[J].激光与光电子学进展, 2016, 53(3):031701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201603028

    FU L, SU Y, LI G H, et al..Application of maximum likelihood type estimates in noninvasive blood glucose monitoring in vivo using optical coherence tomography[J]. Laser & Optoelectronics Progress, 2016, 53(3):031701.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201603028
    [39] HUANG D, SWANSON E A, LIN C P, et al..Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181. doi: 10.1126/science.1957169
    [40] GHOSN M G, TUCHIN V V, LARIN K V. Nondestructive quantification of analyte diffusion in cornea and sclera using optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 2007, 48(6):2726-2733. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad975f2e7cf3fa79ce92d268ffa726e8
    [41] TUCHIN V V. Optical clearing of tissues and blood using the immersion method[J]. Journal of Physics D:Applied Physics, 2005, 38(15):2497-2518. doi: 10.1088/0022-3727/38/15/001
    [42] DE PRETTO L R, YOSHIMURA T M, RIBEIRO M S, et al.. Optical coherence tomography for blood glucose monitoring through signal attenuation[J]. Proceedings of SPIE, 2016, 9697:96973F. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=665cfef702748da7bfa6a35abbec50f2
    [43] 苏亚, 孟卓, 王龙志, 等.光学相干层析无创血糖检测中相关性分析及标定[J].中国激光, 2014, 41(7):0704002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201407022

    SU Y, MENG ZH, WANG L ZH, et al.. Correlation analysis and calibration of noninvasive blood glucose monitoring in vivo with optical coherence tomography[J]. Chinese Journal of Lasers, 2014, 41(7):0704002.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201407022
    [44] 苏亚, 孟卓, 于海民, 等.OCT无创检测技术的人体血糖平衡延迟时间研究[J].激光技术, 2015, 39(1):19-22. http://d.old.wanfangdata.com.cn/Periodical/jgjs201501004

    SU Y, MENG ZH, YU H M, et al..Study on blood glucose lag time in noninvasive measurement using optical coherence tomography[J]. Laser Technology, 2015, 39(1):19-22.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgjs201501004
    [45] DE PRETTO L R, YOSHIMURA T M, RIBEIRO M S, et al.. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches[J]. Journal of Biomedical Optics, 2016, 21(8):086007. doi: 10.1117/1.JBO.21.8.086007
    [46] 刘蓉, 徐可欣, 陈文亮, 等.光学无创血糖检测中的主要问题及研究进展[J].中国科学G辑:物理学力学天文学, 2007, 37(S1):124-131. http://www.cnki.com.cn/Article/CJFDTotal-JGXK2007S1015.htm

    LIU R, XU K X, CHEN W L, et al..Primal problem and research progress of optical non-invasive blood glucose detection[J]. Science in China Series G-Physics, Mechanics & Astronomy, 2007, 37(S1):124-131.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JGXK2007S1015.htm
    [47] 陈星旦, 高静, 丁海泉.论无创血糖监测的红外光谱方法[J].中国光学, 2012, 5(4):317-326. doi: 10.3969/j.issn.2095-1531.2012.04.003

    CHEN X D, GAO J, DING H Q. Infrared spectroscopy for non-invasive blood glucose monitoring[J]. Chinese Optics, 2012, 5(4):317-326.(in Chinese) doi: 10.3969/j.issn.2095-1531.2012.04.003
    [48] CHEN J, ARNOLD M A, SMALL G W. Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions[J]. Analytical Chemistry, 2004, 76(18):5405-5413. doi: 10.1021/ac0498056
    [49] HEISE H M, DAMM U, KONDEPATI V R. Reliable long-term continuous blood glucose monitoring for patients in critical care using microdialysis and infrared spectrometry[J]. Proceedings of SPIE, 2006, 6093:609303. doi: 10.1117/12.650833
    [50] YAMAKOSHI K I, YAMAKOSHI Y. Pulse glucometry:a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry[J]. Journal of Biomedical Optics, 2006, 11(5):054028. doi: 10.1117/1.2360919
    [51] LI G, WANG Y, LIN L, et al.. Dynamic spectrum: a brand-new non-invasive blood component measure method[C]. Proceedings of 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, IEEE, 2005: 1960-1963.
    [52] WANG Y, LI G, LIN L, et al.. Study on the error in the dynamic spectrum method relative with the path length factor as a function of wavelength[C]. Proceedings of 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, IEEE, 2005: 6679-6682.
    [53] 陈星旦.近红外光谱无创生化检验的可能性[J].光学 精密工程, 2008, 16(5):759-763. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200805001

    CHEN X D. Possibility of noninvasive clinical biochemical examination by near infrared spectroscopy[J]. Opt. Precision Eng., 2008, 16(5):759-763.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200805001
    [54] 丁海泉, 卢启鹏, 王动民, 等.近红外光谱无创血糖检测中有效信号提取方法的研究[J].光谱学与光谱分析, 2010, 30(1):50-53. doi: 10.3964/j.issn.1000-0593(2010)01-0050-04

    DING H Q, LU Q P, WANG D M, et al.. Research on the effective signal extraction in the noninvasive blood glucose sensing by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(1):50-53.(in Chinese) doi: 10.3964/j.issn.1000-0593(2010)01-0050-04
    [55] 陈韵.近红外无创血糖测量-基准波长浮动基准法的研究[D].天津: 天津大学, 2009.

    CHEN Y. Study on reference wavelength method for non-invasive blood glucose sensing with near infrared spectroscopy[D]. Tianjin: Tianjin University, 2009.(in Chinese)
    [56] HEISE T, NOSEK L, GABLE J, et al.. ICU glucose monitoring measured in plasma using mid-infrared spectroscopy[J]. Critical Care, 2010, 14(S1):P580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001354158
    [57] KINO S, OMORI S, KATAGIRI T, et al.. Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism[J]. Biomedical Optics Express, 2016, 7(2):701-708. doi: 10.1364/BOE.7.000701
    [58] LIAKAT S, BORS K A, XU L, et al.. Noninvasive in vivo glucose sensing on human subjects using mid-infrared light[J]. Biomedical Optics Express, 2014, 5(7):2397-2404. doi: 10.1364/BOE.5.002397
    [59] YOSHIOKA K, KINO S, MATSUURA Y. Noninvasive measurement of blood glucose level using mid-infrared quantum cascade lasers[J]. Proceedings of SPIE, 2017, 10251:102511U. doi: 10.1117/12.2275006
    [60] 李刚, 周梅, 吴红杰, 等.无创人体血糖检测光学方法的研究现状与发展[J].光谱学与光谱分析, 2010, 30(10):2744-2747. doi: 10.3964/j.issn.1000-0593(2010)10-2744-04

    LI G, ZHOU M, WU H J, et al.. The research status and development of noninvasive glucose optical measurements[J]. Spectroscopy and Spectral Analysis, 2010, 30(10):2744-2747.(in Chinese) doi: 10.3964/j.issn.1000-0593(2010)10-2744-04
    [61] SHIH W C, BECHTEL K L, REBEC M V. Noninvasive glucose sensing by transcutaneous Raman spectroscopy[J]. Journal of Biomedical Optics, 2015, 20(5):051036. doi: 10.1117/1.JBO.20.5.051036
    [62] PANDEY R, PAIDI S K, VALDEZ T A, et al.. Noninvasive monitoring of blood glucose with Raman spectroscopy[J]. Accounts of Chemical Research, 2017, 50(2):264-272. doi: 10.1021/acs.accounts.6b00472
    [63] 凌明胜, 钱志余, 梁超英.血糖浓度荧光光谱检测研究[J].量子电子学报, 2007, 24(5):635-639. doi: 10.3969/j.issn.1007-5461.2007.05.020

    LING M SH, QIAN ZH Y, LIANG CH Y. Research on blood glucose concentration monitoring by fluorescence spectrum[J]. Chinese Journal of Quantum Electronics, 2007, 24(5):635-639.(in Chinese) doi: 10.3969/j.issn.1007-5461.2007.05.020
    [64] SRINIVASAN G, CHEN J, PARISI J, et al..An injectable PEG-BSA-Coumarin-GOx hydrogel for fluorescence turn-on glucose detection[J]. Applied Biochemistry and Biotechnology, 2015, 177(5):1115-1126. doi: 10.1007/s12010-015-1800-2
    [65] 李爱琴, 郭唱, 许苏英.高灵敏检测葡萄糖的新型荧光纳米传感器[J].分析化学, 2017, 45(6):824-829. http://d.old.wanfangdata.com.cn/Periodical/fxhx201706006

    LI A Q, GUO CH, XU S Y. A novel fluorescence sensor for highly sensitive detection of glucose[J]. Chinese Journal of Analytical Chemistry, 2017, 45(6):824-829.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201706006
    [66] FLOWER O J, BIRD S, MACKEN L, et al..Continuous intra-arterial blood glucose monitoring using quenched fluorescence sensing:a product development study[J]. Critical Care and Resuscitation, 2014, 16(1):54-61. http://cn.bing.com/academic/profile?id=fe6588e19e47b1a3332f13239bb5fea0&encoded=0&v=paper_preview&mkt=zh-cn
    [67] STRASMA P J, FINFER S, FLOWER O, et al..Use of an intravascular fluorescent continuous glucose sensor in ICU patients[J]. Journal of Diabetes Science and Technology, 2015, 9(4):762-770. doi: 10.1177/1932296815585872
    [68] QUAN K M, CHRISTISON G B, MACKENZIE H A, et al.. Glucose determination by a pulsed photoacoustic technique:an experimental study using a gelatin-based tissue phantom[J]. Physics in Medicine & Biology, 1993, 38(12):1911-1922. doi: 10.1088-0031-9155-38-12-014/
    [69] TAM A C. Applications of photoacoustic sensing techniques[J]. Reviews of Modern Physics, 1986, 58(2):381-431. doi: 10.1103/RevModPhys.58.381
    [70] PATEL C K N, TAM A C. Pulsed optoacoustic spectroscopy of condensed matter[J]. Reviews of Modern Physics, 1981, 53(3):517-550. doi: 10.1103/RevModPhys.53.517
    [71] NELSON E T, PATEL C K N. Response of piezoelectric transducers used in pulsed optoacoustic spectroscopy[J]. Optics Letters, 1981, 6(7):354-356. doi: 10.1364/OL.6.000354
    [72] NAMITA T, SATO M, KONDO K, et al.. Evaluation of blood glucose concentration measurement using photoacoustic spectroscopy in near-infrared region[J]. Proceedings of SPIE, 2017, 10064:100645A. doi: 10.1117/12.2252532
    [73] 石小巍, 肖啸.基于光声效应的无创血糖检测仪的研究[J].红外, 2009, 30(1):20-23. http://d.old.wanfangdata.com.cn/Periodical/hongw200901005

    SHI X W, XIAO X. Research on noninvasive blood glucose detector based on optoacoustic effect[J]. Infrared, 2009, 30(1):20-23.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hongw200901005
    [74] PAI P P, SANKI P K, SARANGI S, et al.. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system[J]. Review of Scientific Instruments, 2015, 86(6):064901. doi: 10.1063/1.4922416
    [75] REN ZH, LIU G D, HUANG ZH, et al.. Laser-induced photoacoustic glucose spectrum denoising using an improved wavelet threshold translation-invariant algorithm[J]. Proceedings of SPIE, 2009, 7382:73822R. doi: 10.1117/12.835004
    [76] 谭毅, 李长辉.成像深度对光声层析成像的影响[J].中国光学, 2016, 9(5):515-522. http://www.chineseoptics.net.cn/CN/abstract/abstract9453.shtml

    TAN Y, LI CH H. Influence of imaging depth on photoacoustic tomography[J]. Chinese Optics, 2016, 9(5):515-522.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9453.shtml
    [77] ZHU L L, LI H, CAI J L, et al.. Propagation of diffused light modulated by a focused ultrasound in scattering media[J]. Proceedings of SPIE, 2006, 6047:60470B. http://cn.bing.com/academic/profile?id=7f338acd223445304b7f2592da79d2bd&encoded=0&v=paper_preview&mkt=zh-cn
    [78] 王姝蕾.无创血糖近红外光谱信号检测与处理技术研究[D].北京: 北京邮电大学2018: 47-50.

    WANG SH L. Research on the technology of noninvasive blood glucose near-infrared spectroscopy signal detection and processing[D]. Beijing: Beijing University of Posts and Telecommunications, 2018: 47-50.(in Chinese)
    [79] SHAW R A, KOTOWICH S, LEROUX M, et al..Multianalyte serum analysis using mid-infrared spectroscopy[J]. Annals of Clinical Biochemistry:International Journal of Laboratory Medicine, 1998, 35(5):624-632. doi: 10.1177/000456329803500505
    [80] SHEN Y C, DAVIES A G, LINFIELD E H, et al.. The use of fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood[J]. Physics in Medicine and Biology, 2003, 48(13):2023-2032. doi: 10.1088/0031-9155/48/13/313
    [81] KINO S, OMORI S, MATSUURA Y. Blood glucose measurement in vivo using hollow-fiber based, mid-infrared ATR probe with multi-reflection prism[J]. Proceedings of SPIE, 2016, 9702:970209. http://cn.bing.com/academic/profile?id=ed8de262bdd2e4e56e197473420afa5d&encoded=0&v=paper_preview&mkt=zh-cn
    [82] 任重, 刘国栋, 黄振.基于可调谐脉冲激发的血糖浓度光声无损检测研究[J].中国激光, 2016, 43(2):0204001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201602016

    REN ZH, LIU G D, HUANG ZH. Study on photoacoustic noninvasive detection for blood glucose concentration based on tunable pulsed laser[J]. Chinese Journal of Lasers, 2016, 43(2):0204001.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201602016
    [83] PLEITEZ M A, LIEBLEIN T, BAUER A, et al.. In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacousticspectroscopy[J]. Analytical Chemistry, 2013, 85(2):1013-1020. doi: 10.1021/ac302841f
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2600
  • HTML全文浏览量:  790
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-29
  • 修回日期:  2019-01-09
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回