留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远程紫外拉曼光谱检测技术研究进展

何玉青 魏帅迎 郭一新 赵曼 金伟其 任林茂

何玉青, 魏帅迎, 郭一新, 赵曼, 金伟其, 任林茂. 远程紫外拉曼光谱检测技术研究进展[J]. 中国光学(中英文), 2019, 12(6): 1249-1259. doi: 10.3788/CO.20191206.1249
引用本文: 何玉青, 魏帅迎, 郭一新, 赵曼, 金伟其, 任林茂. 远程紫外拉曼光谱检测技术研究进展[J]. 中国光学(中英文), 2019, 12(6): 1249-1259. doi: 10.3788/CO.20191206.1249
HE Yu-qing, WEI Shuai-ying, GUO Yi-xin, ZHAO Man, JIN Wei-qi, REN Lin-mao. Research progress of remote detection with ultraviolet Raman spectroscopy[J]. Chinese Optics, 2019, 12(6): 1249-1259. doi: 10.3788/CO.20191206.1249
Citation: HE Yu-qing, WEI Shuai-ying, GUO Yi-xin, ZHAO Man, JIN Wei-qi, REN Lin-mao. Research progress of remote detection with ultraviolet Raman spectroscopy[J]. Chinese Optics, 2019, 12(6): 1249-1259. doi: 10.3788/CO.20191206.1249

远程紫外拉曼光谱检测技术研究进展

doi: 10.3788/CO.20191206.1249
基金项目: 

国家重点研发计划 2016YFC0800900

河南省科技攻关项目 192102310515

详细信息
    作者简介:

    何玉青(1977—), 女, 河北无极人, 副教授, 2003年于北京理工大学获得博士学位, 主要从事光谱检测与分析、光电成像技术与信息处理等方面的研究。E-mail:yuqinghe@bit.edu.cn

  • 中图分类号: TN23

Research progress of remote detection with ultraviolet Raman spectroscopy

Funds: 

National Key Research and Development Plan of China 2016YFC0800900

Key Scientific and Technological Projects in Henan 192102310515

More Information
  • 摘要: 远距离检测主要用于人类不宜或不易接触的物品检测,紫外拉曼光谱法是一种比较有效的远距离危险物品检测方法,在反恐、禁毒和食品安全等领域具有广泛的应用前景。本文在分析远程拉曼光谱检测技术基本原理的基础上,总结了紫外拉曼光谱检测技术的优势,对远程紫外拉曼光谱检测技术的现状进行综合分析。从激光器发射、光学接收系统、光谱接收、光谱处理等方面分析了不同模块关键技术及研究现状,分析了远程紫外拉曼光谱检测技术的研究难点和发展趋势。

     

  • 图 1  KNO3拉曼光谱

    Figure 1.  Raman spectrum of KNO3

    图 2  远程拉曼光谱检测系统

    Figure 2.  Remote Raman spectroscopy detection system

    图 3  拉曼响应与荧光光谱(Laser Line为激光发射源)

    Figure 3.  Raman response and fluorescence spectrum (Laser Line is the response of the laser source)

    图 4  发射系统和接收系统几何关系

    Figure 4.  Relationship between the transmitting system and the receiving system

    表  1  常规紫外拉曼系统激光光源参数及探测目标参数

    Table  1.   Laser source and target parameters of conventional UV Raman system

    光源参数 目标参数 参考文献
    光源波长/nm 光源能量 目标距离/m 目标类型 尺寸或含量
    228 >0.5 μJ/pulse,5 mW, 0~10 kHz 1~10 explosives 1 mm×1 mm~200 mm×200 mm [15]
    229 CW, 4.3 mW 2.3 PETN, AN 10~1 000 μg/cm2 [46]
    262 3 mW/cm2, 500 Hz 1~10 sucrose等 / [23]
    266 3 mJ/cm2, 20 Hz 6~10 AN 100 μg/cm2 [17]
    266 10.3 mJ/pulse, 10 Hz 18 KClO3, calcite / [24]
    266 23.5 mJ/pulse, 10 Hz 42 Teflon 2 mm厚, 30 mm×30 mm的立方体 [19]
    266 8 mJ/pulse, 30 Hz 533 Teflon/cyclohexane, acetonitrile 850 g/m2 [5]
    355 13 mW, 100 Hz 6 有机物等 / [41]
    355 1.5 mJ/pulse, 1 kHz 10 AN 单个AN微粒直径<300 μm [18]
    220, 232, 248, 250, 260等波长可调 3~10 mJ/pulse, 10 Hz 13 NM, AN / [12]
        其中CW为连续激光器,表中的“/”代表文献中未提到该项参数.
    下载: 导出CSV

    表  2  常规光学接收系统参数及目标距离

    Table  2.   Conventional optical receiving system parameters and target distance

    光学接收系统 目标距离/m 参考文献
    几何结构 光学结构 直径 F 焦距/mm
    coaxial Cassegrain 1.6 in. f/15 / 533 [5]
    coaxial Cassegrain 203 mm 10 2 032 22 [8]
    coaxial Cassegrain 203.2 mm / / 6 [41]
    coaxial Schmidt-Cassegrain 200 mm / 300 10 [18]
    coaxial Newtonian 6 in. f/4 / 30 [6]
    coaxial Newtonian 300 mm / 1 000 6~10 [17]
    coaxial Richey Chretien 12.4 in. f/9.1 / 18 [24]
    coaxial Gregorian 6 in. / / / [34]
    off-axis Cassegrain / / / 13 [12]
    / Maksutov-Cassegrain 3.5 in. / / 2.3 [46]
    / Schmidt-Cassegrain 8 in. / / 30 [22]
    下载: 导出CSV

    表  3  现有远程紫外拉曼光谱检测系统光谱接收模块参数

    Table  3.   Spectral receiver module parameters of current remote ultraviolet Raman spectroscopy system

    光谱分辨率/cm-1 光栅分辨率 光谱范围/cm-1 信噪比 探测器 参考文献
    3 300 grooves/mm, 300 nm / / gated ICCD [24]
    4.5 600、2 400、1 800 grooves/mm 800~1800, 2 500-4 000 / ICCD [10]
    10 / / / gated ICCD [18]
    11 2 400 grooves/mm, 250 nm / 5:1 gated ICCD [5]
    15 / / 13:1 gated ICCD [23]
    22 2 380 grooves/mm 650~3 650 / gated ICCD [6]
    30 3 600 line/mm <3443 / ICCD [34]
    40 1 200, 2 400 grooves/mm 100~2 100, 300~4 300 / gated ICCD [41]
    下载: 导出CSV
  • [1] COONEY J. Satellite observation using Raman component of laser backscatter[C]. Proceedings of the Symposium of Electromagnetic Sensing of the Earth from Satellites, Polytechnic Institute of Brooklyn Press, 1967: P1-P10.
    [2] LEONARD D A. Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser[J]. Nature, 1967, 216(5111):142-143. doi: 10.1038/216142a0
    [3] HIRSCHFELD T. Range independence of signal in variable focus remote Raman spectrometry[J]. Applied Optics, 1974, 13(6):1435-1437. doi: 10.1364/AO.13.001435
    [4] MEASURES R M. Laser Remote Sensing:Fundamentals and Applications[M]. New York:John Wiley & Sons, 1984.
    [5] WU M, RAY M, FUNG H, et al.. Stand-off detection of chemicals by UV Raman spectroscopy[J]. Applied Spectroscopy, 2000, 54(6):800-806. doi: 10.1366/0003702001950418
    [6] RAY M D, SEDLACEK A J, WU M. Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants[J]. Review of Scientific Instruments, 2000, 71(9):3485-3489. doi: 10.1063/1.1288255
    [7] RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048):501-502. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_39a2eee3860202c1b00175b16edc577f
    [8] FULTON J. Remote detection of explosives using Raman spectroscopy[J]. Proceedings of SPIE, 2011, 8018:80181A. doi: 10.1117/12.887101
    [9] SMITH E, DENT G. Modern Raman Spectroscopy:A Practical Approach[M]. New York:John Wiley & Sons, 2013.
    [10] BYKOV S, LEDNEV I, IANOUL A, et al.. Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region[J]. Applied Spectroscopy, 2005, 59(12):1541-1552. doi: 10.1366/000370205775142511
    [11] CLARK R J H, DINES T J. Resonance Raman spectroscopy, and its application to inorganic chemistry. New analytical methods (27)[J]. Angewandte Chemie International Edition in English, 1986, 25(2):131-158. doi: 10.1002/anie.198601311
    [12] PETTERSSON A, WALLIN S, STMARK H, et al.. Explosives standoff detection using Raman spectroscopy:from bulk towards trace detection[J]. Proceedings of SPIE, 2010, 7664:76641K. doi: 10.1117/12.852544
    [13] 周明辉, 廖春艳, 任兆玉, 等.表面增强拉曼光谱生物成像技术及其应用[J].中国光学, 2013, 6(5):633-642. http://www.chineseoptics.net.cn/CN/abstract/abstract9047.shtml

    ZHOU M H, LIAO CH Y, REN ZH Y, et al.. Bioimaging technologies based on surface-enhanced Raman spectroscopy and their applications[J]. Chinese Optics, 2013, 6(5):633-642.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9047.shtml
    [14] ANGEL S M, KULP T J, VESS T M. Remote-Raman spectroscopy at intermediate ranges using low-power cw lasers[J]. Applied Spectroscopy, 1992, 46(7):1085-1091. doi: 10.1366/0003702924124132
    [15] MCCAIN S T, GUENTHER B D, BRADY D J, et al.. Coded-aperture Raman imaging for standoff explosive detection[J]. Proceedings of SPIE, 2012, 8358:83580Q. doi: 10.1117/12.919292
    [16] CHIRICO R, ALMAVIVA S, BOTTI S, et al.. Stand-off detection of traces of explosives and precursors on fabrics by UV Raman spectroscopy[J]. Proceedings of SPIE, 2012, 8546:85460W. doi: 10.1117/12.974518
    [17] ALMAVIVA S, ANGELINI F, CHIRICO R, et al.. Eye-safe UV Raman spectroscopy for remote detection of explosives and their precursors in fingerprint concentration[J]. Proceedings of SPIE, 2014, 9253:925303. doi: 10.1117/12.2067292
    [18] GLIMTOFT M, BM··TH P, SAARI H, et al.. Towards eye-safe standoff Raman imaging systems[J]. Proceedings of SPIE, 2014, 9072:907210. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0214507207/
    [19] CARROLL J A, IZAKE E L, CLETUS B, et al.. Eye-safe UV stand-off Raman spectroscopy for the ranged detection of explosives in the field[J]. Journal of Raman Spectroscopy, 2015, 46(3):333-338. doi: 10.1002/jrs.4642
    [20] PATRICK C, CAL C J, JEAN D R, et al.. Detection of explosives on surfaces using UV Raman spectroscopy: effect of substrate color[R]. US Army Research Laboratory Adelphi United States, 2017.
    [21] GAFT M, NAGLI L. Standoff laser-based spectroscopy for explosives detection[J]. Proceedings of SPIE, 2007, 6739:673903. doi: 10.1117/12.736631
    [22] GAFT M, NAGLI L. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11):1739-1746. doi: 10.1016/j.optmat.2007.11.013
    [23] HOPKINS A J, COOPER J L, PROFETA L T M, et al.. Portable deep-ultraviolet(DUV) Raman for standoff detection[J]. Applied Spectroscopy, 2016, 70(5):861-873. doi: 10.1177/0003702816638285
    [24] LAMSAL N, SHARMA S K, ACOSTA T E, et al.. Ultraviolet stand-off Raman measurements using a gated spatial heterodyne Raman spectrometer[J]. Applied Spectroscopy, 2016, 70(4):666-675. doi: 10.1177/0003702816631304
    [25] 张莉, 郑海洋, 王颖萍, 等.远距离探测拉曼光谱特性[J].物理学报, 2016, 65(5):054206. http://d.old.wanfangdata.com.cn/Periodical/wlxb201605017

    ZHANG L, ZHENG H Y, WANG Y P, et al.. Characteristics of Raman spectrum from stand-off detection[J]. Acta Physica Sinica, 2016, 65(5):054206.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201605017
    [26] 姚齐峰, 王帅, 夏嘉斌, 等.远距离物质拉曼光谱探测系统[J].红外与激光工程, 2016, 45(11):1103001. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201611001

    YAO Q F, WANG SH, XIA J B, et al.. Remote Raman spectrum detection system of material[J]. Infrared and Laser Engineering, 2016, 45(11):1103001.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201611001
    [27] GULATI K K, GAMBHIR V, REDDY M N. Detection of nitro-aromatic compound in soil and sand using time gated Raman spectroscopy[J]. Defence Science Journal, 2017, 67(5):588-591. doi: 10.14429/dsj.67.10290
    [28] FARLEY Ⅲ C, KASSU A, BOSE N, et al.. Short distance standoff Raman detection of extra virgin olive oil adulterated with canola and grapeseed oils[J]. Applied Spectroscopy, 2017, 71(6):1340-1347. doi: 10.1177/0003702816681796
    [29] 刘凯, 陈荣利, 常凌颖, 等.共口径双通道红外扫描成像光学系统[J].应用光学, 2012, 33(2):395-401. http://d.old.wanfangdata.com.cn/Periodical/yygx201202031

    LIU K, CHEN R L, CHANG L Y, et al.. Common-aperture dual-channel infrared scanning imaging optical system[J]. Journal of Applied Optics, 2012, 33(2):395-401. http://d.old.wanfangdata.com.cn/Periodical/yygx201202031
    [30] 巩盾, 王红, 田铁印.多种应用于高功率激光技术的光学系统设计[J].红外与激光工程, 2013, 42(S1):118-122. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2013z1024

    GONG D, WANG H, TIAN T Y. Optical design of various optical systems applied in high power laser technology[J]. Infrared and Laser Engineering, 2013, 42(S1):118-122.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2013z1024
    [31] 殷笑尘, 付彦辉.红外/激光共孔径双模导引头光学系统设计[J].红外与激光工程, 2015, 44(2):428-431. doi: 10.3969/j.issn.1007-2276.2015.02.005

    YIN X CH, FU Y H. Optical design of common aperture IR/ladar dual-mode imaging seeker[J]. Infrared and Laser Engineering, 2015, 44(2):428-431.(in Chinese) doi: 10.3969/j.issn.1007-2276.2015.02.005
    [32] 贾冰, 曹国华, 吕琼莹, 等.多谱段共孔径跟踪/引导系统光学设计[J].红外与激光工程, 2017, 46(2):0218001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201702025

    JIA B, CAO G H, LV Q Y, et al.. Optical design of tracking/guiding system with multi-spectrum and common aperture[J]. Infrared and Laser Engineering, 2017, 46(2):0218001.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201702025
    [33] 王帅, 姚齐峰, 董明利, 等.远程激光拉曼光谱探测系统前置光学系统设计[J].红外与激光工程, 2018, 47(4):0418004. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201804029

    WANG SH, YAO Q F, DONG M L, et al.. Fore optical system design for remote laser Raman spectrum detection system[J]. Infrared and Laser Engineering, 2018, 47(4):0418004.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201804029
    [34] HA Y C, LEE J H, KOH Y J, et al.. Development of an ultraviolet Raman spectrometer for standoff detection of chemicals[J]. Current Optics and Photonics, 2017, 1(3):247-251.
    [35] 胡广骁, 熊伟, 罗海燕, 等.用于远程探测的空间外差拉曼光谱技术研究[J].光谱学与光谱分析, 2016, 36(12):3951-3957. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201612025

    HU G X, XIONG W, LUO H Y, et al.. The research of spatial heterodyne raman spectroscopy with standoff detection[J]. Spectroscopy and Spectral Analysis, 2016, 36(12):3951-3957.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201612025
    [36] ROESLER F L, HARLANDER J M. Spatial heterodyne spectroscopy:interferometric performance at any wavelength without scanning[J]. Proceedings of SPIE, 1990, 1318:234-244. doi: 10.1117/12.22119
    [37] CARTER J C, ANGEL S M, LAWRENCE-SNYDER M, et al.. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Applied Spectroscopy, 2005, 59(6):769-775. doi: 10.1366/0003702054280612
    [38] LAMSAL N, BARNETT P, ANGEL S M, et al.. Remote UV Raman spectroscopy for planetary exploration using a miniature spatial heterodyne Raman spectrometer[C]. Proceedings of the 47th Lunar and Planetary Science Conference, 2016: 1500.
    [39] COOPER J, HOPKINS A J, PROFETA L T M, et al.. Deep ultraviolet Raman spectroscopy for eyesafe standoff chemical threat detection[J]. Proceedings of SPIE, 2018, 10637:1063714.
    [40] 王欢, 王永志, 赵瑜, 等.拉曼光谱中荧光抑制技术的研究新进展综述[J].光谱学与光谱分析, 2017, 37(7):2050-2056. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201707013

    WANG H, WANG Y ZH, ZHAO Y, et al.. Latest methods of fluorescence suppression in Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(7):2050-2056.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201707013
    [41] SKULINOVA M, LEFEBVRE C, SOBRON P, et al.. Time-resolved stand-off UV-Raman spectroscopy for planetary exploration[J]. Planetary and Space Science, 2014, 92:88-100. doi: 10.1016/j.pss.2014.01.010
    [42] 姜承志.拉曼光谱数据处理与定性分析技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2014.

    JIANG CH ZH. Research on data processing and qualitative analysis of Raman spectrum[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2014.(in Chinese)
    [43] 侯岩.基于相关系数与局部信噪比的拉曼谱峰识别技术研究[D].成都: 电子科技大学, 2017.

    HOU Y. Based on correlation coefficient and local SNR Raman spectra recognition technology research[D]. Chengdu: School of Astronautics & Aeronautics, 2017.(in Chinese)
    [44] 夏嘉斌, 祝连庆, 姚齐峰, 等.基于Kolmogorov-Smirnov检验的远程拉曼光谱寻峰算法[J].仪器仪表学报, 2018, 39(3):141-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201803017

    XIA J B, ZHU L Q, YAO Q F, et al.. Remote Raman spectral peak searching algorithm based on Kolmogorov-Smirnov test[J]. Chinese Journal of Scientific Instrument, 2018, 39(3):141-147.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201803017
    [45] HAGEN N, BRADY D J. Coded-aperture DUV spectrometer for stand-off Raman spectroscopy[J]. Proceedings of SPIE, 2009, 7319:73190D. doi: 10.1117/12.818830
    [46] HUFZIGER K T, BYKOV S V, ASHER S A. Ultraviolet Raman wide-field hyperspectral imaging spectrometer for standoff trace explosive detection[J]. Applied Spectroscopy, 2017, 71(2):173-185. doi: 10.1177/0003702816680002
    [47] YELLAMPALLE B, MARTIN R, WITT K, et al.. Performance comparison of single and dual-excitation-wavelength resonance-Raman explosives detectors[J]. Proceedings of SPIE, 2017, 10183:101830E. http://cn.bing.com/academic/profile?id=6308e6a7e375924c4d87cd967fe358f3&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  2123
  • HTML全文浏览量:  1023
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-10
  • 修回日期:  2019-01-23
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!