留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶剂中稀土上转换纳米粒子表面猝灭效应的定量分析

于海洋 涂浪平 张友林 赵慧颖 孔祥贵

于海洋, 涂浪平, 张友林, 赵慧颖, 孔祥贵. 溶剂中稀土上转换纳米粒子表面猝灭效应的定量分析[J]. 中国光学, 2019, 12(6): 1288-1294. doi: 10.3788/CO.20191206.1288
引用本文: 于海洋, 涂浪平, 张友林, 赵慧颖, 孔祥贵. 溶剂中稀土上转换纳米粒子表面猝灭效应的定量分析[J]. 中国光学, 2019, 12(6): 1288-1294. doi: 10.3788/CO.20191206.1288
YU Hai-yang, TU Lang-ping, ZHANG You-lin, ZHAO Hui-ying, KONG Xiang-gui. Quantitative analysis of the surface quenching effect of lanthanide-doped upconversion nanoparticles in solvents[J]. Chinese Optics, 2019, 12(6): 1288-1294. doi: 10.3788/CO.20191206.1288
Citation: YU Hai-yang, TU Lang-ping, ZHANG You-lin, ZHAO Hui-ying, KONG Xiang-gui. Quantitative analysis of the surface quenching effect of lanthanide-doped upconversion nanoparticles in solvents[J]. Chinese Optics, 2019, 12(6): 1288-1294. doi: 10.3788/CO.20191206.1288

溶剂中稀土上转换纳米粒子表面猝灭效应的定量分析

doi: 10.3788/CO.20191206.1288
基金项目: 

国家自然科学基金资助项目 11874354

国家自然科学基金资助项目 51772122

国家自然科学基金资助项目 11874355

详细信息
    作者简介:

    于海洋(1994—), 男, 河北沧州人, 硕士研究生, 2016年于中国科学技术大学获得学士学位, 主要从事稀土掺杂上转换纳米粒子发光材料及其机理方面的研究。E-mail:yutongyhy@hotmail.com

    孔祥贵(1955—), 男, 山东曲阜人, 博士, 研究员, 博士生导师, 1980年于中国科学技术大学获得学士学位, 1993年于中国科学院长春光学精密机械与物理研究所获得硕士学位, 1998年于中国科学院长春光学精密机械与物理研究所获得博士学位, 现任中国生物物理学会理事, 主要从事稀土上转换发光纳米材料及其应用方面的研究。E-mail:xgkong14@ciomp.ac.cn

  • 中图分类号: TP394.1;TH691.9

Quantitative analysis of the surface quenching effect of lanthanide-doped upconversion nanoparticles in solvents

Funds: 

National Natural Science Foundation of China 11874354

National Natural Science Foundation of China 51772122

National Natural Science Foundation of China 11874355

More Information
  • 摘要: 激光诱导的稀土纳米粒子的上转换发光由于具有独特的光学效应,多年来一直受到人们的广泛研究。其中,溶剂对纳米粒子表面效应的影响是该类材料在实际应用中面临的一个普遍问题,传统的分析方法对溶剂的作用难以给出定量化的分析结果。针对这一困难,本文利用Monte Carlo计算模拟方法,从离子-离子相互作用的微观层面上重构出宏观的上转换发光现象,进而分别给出了纳米粒子表面效应在4种不同的水相溶剂:水、甲醇、乙醇和N,N-二甲基甲酰胺(DMF)中的定量化分析结果。稳态和动力学光谱测试结果均表明,溶剂水中的上转换纳米粒子表面猝灭速率最高,甲醇和乙醇中次之,DMF中最低,这可归因于溶剂中羟基基团及其活性对于上转换纳米粒子表面猝灭效应的影响。进一步,通过计算模拟获得了NaYF4:20% Yb,2% Er上转换纳米粒子中,Yb3+激发态(2F5/2)表面猝灭速率的定量化数值,分别为:2.5×104 s-1(DMF)、1×105 s-1(甲醇和乙醇)、5×105 s-1(水)。
  • 图  1  (a) NaYF4:20%Yb, 2%Er上转换纳米粒子的SEM图片(图中标尺为100 nm)及其(b)XRD图谱(与NaYF4六角相标准图谱进行对比,编号:16-0334)

    Figure  1.  (a)SEM image of NaYF4:20%Yb, 2%Er upconversion nanoparticles(scale bar is 100 nm) and its X-ray powder diffraction spectra(b)(compared with the Joint Committee on Powder Diffraction Standards, file number 16-0334)

    图  2  (a) 上转换纳米粒子在4种不同溶剂中的上转换发光光谱图(Ex:980 nm, 激发光功率密度为100 W/cm2,纳米粒子浓度均为50 mg/mL)。(b)4种溶剂中的纳米粒子上转换发光强度对比结果(以DMF溶剂中的发光强度归一化,光谱积分区域:500~700 nm)

    Figure  2.  (a)The emission spectra of upconversion nanoparticles in four different solvents(Ex:980 nm, power density is 100 W/cm2, the concentration of nanoparticles is 50 mg/mL). (b)Comparison of upconversion luminescence intensities(spectra integration region:500~700 nm) in four different solvents (normalized by the luminescence intensity of nanoparticles in DMF solvent)

    图  3  980 nm的纳秒脉冲光激发下,纳米粒子在不同溶剂中的发光离子Er3+的上转换发光(540 nm)(a)以及敏化离子Yb3+的斯托克斯发光(1 040 nm)(b)的荧光衰减曲线

    Figure  3.  Under the excitation of 980 nm nanosecond pulsed light, the lifetime curves of (a)upconversion luminescence(540 nm) of activator Er3+ and (b)Stokes luminescence (1 040 nm) of sensitizer Yb3+ of the nanoparticles in different solvents

    图  4  (a) 基于Monte Carlo计算模拟的上转换发光微观物理图像。(b)NaYF4:20%Yb, 2%Er上转换纳米粒子中离子间相互作用的计算模拟参数

    Figure  4.  (a)Upconversion luminescence microphysical image based on Monte Carlo computational simulation. (b)Computational simulation parameters of the interaction between ions in NaYF4:20%Yb, 2%Er upconversion nanoparticles

    图  5  (a) 在不同Yb3+激发态表面猝灭速率下计算机模拟的纳米粒子上转换发光强度。(b)模拟结果与实验数据的对比图

    Figure  5.  (a)Upconversion luminescence intensity of nanoparticles at different quenching rates in Yb3+ excited state surface by computational simulation. (b)Comparison of simulation results and experimental results

  • [1] ZHOU L, WANG R, YAO CH, et al.. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers[J]. Nature Communications, 2015, 6:6938. doi: 10.1038/ncomms7938
    [2] 李巧凤, 任舒悦, 王瑜, 等.基于AuNP-AuNP-UCNP三联体结构的传感体系高效检测环境雌激素双酚A和雌二醇[J].分析化学, 2018, 46(4):486-492. http://d.old.wanfangdata.com.cn/Periodical/fxhx201804004

    LI Q F, REN SH Y, WANG Y, et al.. Efficient detection of environmental estrogens bisphenol A and estradiol by sensing system based on AuNP-AuNP-UCNP triple structure[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4):486-492.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201804004
    [3] 李慧, 杨魁胜, 祁宁, 等.Yb3+/Er3+掺杂氟氧化物微晶玻璃的制备与发光性能[J].中国光学, 2011, 4(6):672-677. doi: 10.3969/j.issn.2095-1531.2011.06.022

    LI H, YANG K SH, QI N, et al.. Preparation and luminescence properties of Yb3+/Er3+-codoped oxyfluoride glass ceramics[J]. Chinese Optics, 2011, 4(6):672-677.(in Chinese) doi: 10.3969/j.issn.2095-1531.2011.06.022
    [4] LIU X W, WANG Y, LI X Y, et al.. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting[J]. Nature Communications, 2017, 8:899. doi: 10.1038/s41467-017-00916-7
    [5] 华修德, 尤红杰, 杨家川, 等.基于上转换荧光标记的氯噻啉免疫层析方法研究[J].分析化学, 2018, 46(3):413-421. http://d.old.wanfangdata.com.cn/Periodical/fxhx201803017

    HUA X D, YOU H J, YANG J CH, et al.. Immunochromatographic assay for detection of imidaclothiz based on upconversion fluorescence labeling[J]. Chinese Journal of Analytical Chemistry, 2018, 46(3):413-421.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201803017
    [6] CHEN H D, LEE S M, MONTENEGRO A, et al.. Plasmonically enhanced spectral upconversion for improved performance of GaAs solar cells under nonconcentrated solar illumination[J]. ACS Photonics, 2018, 5(11):4289-4295. doi: 10.1021/acsphotonics.8b01245
    [7] 张磊, 范亚蕾, 黄月霞, 等.Al3+, Ba2+掺杂YF3:Er3+, Yb3+的上转换发光性能[J].发光学报, 2018, 39(11):1533-1541.

    ZHANG L, FAN Y L, HUANG Y X, et al.. Upconversion luminescence properties of YF3:Er3+, Yb3+doped with Al3+, Ba2+[J]. Chinese Journal of Luminescence, 2018, 39(11):1533-1541.(in Chinese)
    [8] LU Y Q, ZHAO J B, ZHANG R, et al.. Tunable lifetime multiplexing using luminescent nanocrystals[J]. Nature Photonics, 2014, 8(1):32-36. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232009653/
    [9] LIU Y J, LU Y Q, YANG X S, et al.. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 2017, 543(7644):229-233. doi: 10.1038/nature21366
    [10] 韩玉平, 谌林, 李贞, 等.基于上转换荧光纳米颗粒-聚多巴胺纳米颗粒的生物传感器检测癌胚抗原[J].分析化学, 2018, 46(8):1178-1185. http://d.old.wanfangdata.com.cn/Periodical/fxhx201808004

    HAN Y P, SHEN L, LI ZH, et al.. An aptasensor based on upconversion nanoparticles-polydopamine nanoparticles nanosystem for detection of carcinoembryonic antigen[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8):1178-1185.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201808004
    [11] 李洋洋, 李大光, 张丹, 等.小尺寸NaLuF4:Yb3+/Tm3+纳米晶的生长及上转换发光[J].发光学报, 2018, 39(6):764-770. http://d.old.wanfangdata.com.cn/Periodical/fgxb201806002

    LI Y Y, LI D G, ZHANG D, et al.. Growth process and upconversion luminescence of NaLuF4:Yb3+/Tm3+ nanocrystals[J]. Chinese Journal of Luminescence, 2018, 39(6):764-770.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201806002
    [12] JOHNSON N J J, HE SH, DIAO SH, et al.. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals[J]. Journal of the American Chemical Society, 2017, 139(8):3275-3282. doi: 10.1021/jacs.7b00223
    [13] CHEN Q SH, XIE X J, HUANG B L, et al.. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping[J]. Angewandte Chemie International Edition, 2017, 56(26):7605-7609. doi: 10.1002/anie.201703012
    [14] HE SH, JOHNSON N J J, HUU V A N, et al.. Simultaneous enhancement of photoluminescence, MRI relaxivity, and CT contrast by tuning the interfacial layer of lanthanide heteroepitaxial nanoparticles[J]. Nano Letters, 2017, 17(8):4873-4880. doi: 10.1021/acs.nanolett.7b01753
    [15] ZUO J, LI Q Q, XUE B, et al.. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure[J]. Nanoscale, 2017, 9(23):7941-7946. doi: 10.1039/C7NR01403A
    [16] FISCHER S, BRONSTEIN N D, SWABECK J K, et al.. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals[J]. Nano Letters, 2016, 16(11):7241-7247. doi: 10.1021/acs.nanolett.6b03683
    [17] ZUO J, SUN D P, TU L P, et al.. Precisely tailoring upconversion dynamics via energy migration in core-shell nanostructures[J]. Angewandte Chemie International Edition, 2018, 57(12):3054-3058. doi: 10.1002/anie.201711606
    [18] QIAN H SH, ZHANG Y. Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence[J]. Langmuir, 2008, 24(21):12123-12125. doi: 10.1021/la802343f
    [19] RABOUW F T, PRINS P T, VILLANUEVA-DELGADO P, et al.. Quenching pathways in NaYF4:Er3+, Yb3+ upconversion nanocrystals[J]. ACS Nano, 2018, 12(5):4812-4823. doi: 10.1021/acsnano.8b01545
  • 加载中
图(5)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  58
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-29
  • 修回日期:  2019-02-03
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回