留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷表面放电光泵浦源放电特性研究

黄超 马连英 朱峰 安晓霞 于力 刘晶儒

黄超, 马连英, 朱峰, 安晓霞, 于力, 刘晶儒. 陶瓷表面放电光泵浦源放电特性研究[J]. 中国光学(中英文), 2019, 12(6): 1321-1328. doi: 10.3788/CO.20191206.1321
引用本文: 黄超, 马连英, 朱峰, 安晓霞, 于力, 刘晶儒. 陶瓷表面放电光泵浦源放电特性研究[J]. 中国光学(中英文), 2019, 12(6): 1321-1328. doi: 10.3788/CO.20191206.1321
HUANG Chao, MA Lian-ying, ZHU Feng, AN Xiao-xia, YU Li, LIU Jing-ru. Discharge characteristics of optical pumping source by ceramic surface discharge[J]. Chinese Optics, 2019, 12(6): 1321-1328. doi: 10.3788/CO.20191206.1321
Citation: HUANG Chao, MA Lian-ying, ZHU Feng, AN Xiao-xia, YU Li, LIU Jing-ru. Discharge characteristics of optical pumping source by ceramic surface discharge[J]. Chinese Optics, 2019, 12(6): 1321-1328. doi: 10.3788/CO.20191206.1321

陶瓷表面放电光泵浦源放电特性研究

doi: 10.3788/CO.20191206.1321
基金项目: 

激光与物质相互作用国家重点实验室基金项目 SKLLIM1011-01

详细信息
    作者简介:

    黄超(1979—), 男, 重庆万州人, 硕士, 助理研究员, 2002年于四川大学获得学士学位, 2009年于西北核技术研究所获得硕士学位, 主要从事激光技术及应用方面的研究。E-mail:471356437@qq.com

  • 中图分类号: TN248.5

Discharge characteristics of optical pumping source by ceramic surface discharge

Funds: 

State Key Laboratory Foundation of Laser Interaction with Matter SKLLIM1011-01

More Information
  • 摘要: 为了提高表面放电光泵浦源的寿命,以Al2O3陶瓷作为放电基板,研制了分段表面放电光泵浦源。基于放电电压和电流波形,详细研究了泵浦源的放电周期,放电通道电阻,能量沉积效率和等离子体功率密度。发现泵浦源的放电周期、放电通道电阻和能量沉积效率均随放电间隙长度和混合气体气压的增大而变大,随充电电压的增加而减小;而等离子体功率密度主要取决于充电电压和放电间隙长度,基本不随混合气体气压的改变而变化。在充电电压为26.8 kV,气压为100 kPa,放电间隙长8 cm的条件下,泵浦源的能量沉积效率约为82%,等离子体功率密度达到了9.36 MW/cm。实验研究表明:Al2O3陶瓷表面放电光泵浦源具有良好的放电特性,较同等条件下聚四氟乙烯表面放电光泵浦源的等离子体功率密度更高,可产生更强的真空紫外辐射,辐射亮度温度大于23 kK。Al2O3陶瓷表面放电光泵浦源适用于光泵浦XeF2气体形成大功率XeF(C-A)蓝绿激光。

     

  • 图 1  陶瓷表面放电光泵浦源的结构示意图

    Figure 1.  Structure schematic of surface discharge optical pumping source with Al2O3 ceramic substrate

    图 2  放电光泵浦源的放电电压和电流波形

    Figure 2.  Voltage and current waveform for surface discharge optical pumping source

    图 3  放电周期随电压、间隙和气压的变化

    Figure 3.  Discharge period varies with charge voltage, discharge gap and pressure of mix gas

    图 4  放电等离子体照片

    Figure 4.  Image of discharge plasma for surface discharge source

    图 5  不同条件下的放电通道电阻

    Figure 5.  Discharge channel resistance under different conditions

    图 6  电流陡度随电压、间隙和气压的变化

    Figure 6.  Current gradient varies with charge voltage, discharge gap and pressure of mix gas

    图 7  能量沉积效率随电压、间隙和气压的变化

    Figure 7.  Energy deposition efficiency varies with charge voltage, discharge gap and pressure of mix gas

    图 8  等离子体功率密度随电压、间隙和气压的变化

    Figure 8.  Average power density of discharge plasma varies with charge voltage, discharge gap and pressure of mix gas

    图 9  辐射亮度温度随放电等离子体功率密度的变化情况

    Figure 9.  Radiation brightness temperature varies with average power density of discharge plasma

  • [1] 王永强, 仲钊, 谢军, 等.温度对不同老化程度的绝缘纸板沿面放电的影响[J].高电压技术, 2017, 43(8):2724-2732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201708038

    WANG Y Q, ZHONG ZH, XIE J, et al. Influence of temperature on the surface discharge of insulating paperboard with different aging degree[J]. High Voltage Engineering, 2017, 43(8):2724-2732.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201708038
    [2] 赵玉顺, 张桦, 陈维江, 等.雷电冲击电压下环氧树脂基频率选择超材料沿面放电特性[J].电工技术学报, 2017, 32(20):10-19. http://d.old.wanfangdata.com.cn/Periodical/dgjsxb201720002

    ZHAO Y SH, ZHANG H, CHEN W J, et al.. Analysis of surface discharge characteristics of a frequency selective metamaterial based on epoxy resin under lightning pulse voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(20):10-19.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dgjsxb201720002
    [3] 郑重, 于志诚, 杜赫, 等.液氮温区超导复合绝缘材料沿面放电特性[J].中国电力, 2018, 51(3):69-73.

    ZHENG ZH, YU ZH H, DU H, et al.. Characteristics of surface discharge on the interface of solid insulation and liquid nitrogen in superconducting applications[J]. Electric Power, 2018, 51(3):69-73.(in Chinese)
    [4] 许芝龙, 许健芳.附着金属颗粒的绝缘介质沿面放电微观发展过程[J].绝缘材料, 2018, 51(7):65-71, 76.

    XU ZH L, XU J F. Micro development process of surface discharge of insulation medium with metal particles[J]. Insulating Materials, 2018, 51(7):65-71, 76.(in Chinese)
    [5] QI H H, WANG H Y, SUN P, et al.. A comparative study of volume discharge versus surface discharge generated by nanosecond pulses in airflow with wire-to-wire electrode[C]. Proceedings of the 13th AsiaPacific Conference on Plasma Science and Technology, Professional Committee of Plasma Science and Technology, China Mechanics Society, Donghua University, 2016.
    [6] 周织建, 聂伟荣, 洪肇斌.共面薄膜电极表面放电冷却技术[J].光学 精密工程, 2018, 26(4):866-874. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201804016

    ZHOU ZH J, NIE W R, HONG ZH B. Electrocooling technology based on surface discharge of thin coplanar flat electrodes[J]. Opt. Precision Eng., 2018, 26(4):866-874.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201804016
    [7] 潘春青, 岳田利, 王铁成, 等.气体沿面放电低温等离子体对扩展青霉孢子杀灭效果[J].食品科学, 2017, 38(21):1-7. doi: 10.7506/spkx1002-6630-201721001

    PAN CH Q, YUE T L, WANG T CH, et al.. Killing effect of low-temperature plasma generated by gas phase surface discharge on Penicillium expansum spores[J]. Food Science, 2017, 38(21):1-7.(in Chinese) doi: 10.7506/spkx1002-6630-201721001
    [8] 孙路石, 曾曌, 袁旭东, 等.沿面型介质阻挡放电氧化NO的试验研究[J].华中科技大学学报(自然科学版), 2017, 45(4):68-72. http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201704013

    SUN L SH, ZENG ZH, YUAN X D, et al.. Experimental research on NO oxidization by surface dielectric barrier discharge[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 45(4):68-72.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201704013
    [9] CAO Y, LI J, JIANG N, et al.. The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5):054018. doi: 10.1088/2058-6272/aaa3d5
    [10] ARTEM'EV M Y, BASHKIN A S, MIKHEEV L D, et al.. NF3/H2 and ClF5/H2 chemical HF lasers initiated by radiation from a surface discharge[J]. Proceedings of SPIE, 1998, 3574:385-396. doi: 10.1117/12.334461
    [11] YU L, MA L Y, YI A P, et al.. An optically pumped XeF(C-A) laser with repetitive rate of 10 Hz[J]. Review of Scientific Instruments, 2012, 83(1):013107. doi: 10.1063/1.3677847
    [12] YU L, ZHU F, SHEN Y L, et al.. A narrow linewidth and tunable XeF(C-A) laser[J]. Laser Physics, 2013, 23(8):085006. doi: 10.1088/1054-660X/23/8/085006
    [13] 全向前, 陈祥子, 全永前, 等.深海光学照明与成像系统分析及进展[J].中国光学, 2018, 11(2):153-165. http://www.chineseoptics.net.cn/CN/abstract/abstract9573.shtml

    QUAN X Q, CHEN X Z, QUAN Y Q, et al.. Analysis and research progress of deep-sea optical illumination and imaging system[J]. Chinese Optics, 2018, 11(2):153-165.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9573.shtml
    [14] BEVERLY Ⅲ R E. Electrical, gasdynamic, and radiative properties of planar surface discharges[J]. Journal of Applied Physics, 1986, 60(1):104-124. doi: 10.1063/1.337673
    [15] SCOTT S J. Long-life 2kHz X-ray preioniser[J]. Proceedings of SPIE, 1994, 2206:16-24. doi: 10.1117/12.184581
    [16] SZE R C. Large-area surface-discharge UV light source for materials processing applications[J]. Proceedings of SPIE, 1997, 2987:88-93. doi: 10.1117/12.271553
    [17] TUEMA F A, FOURACRE R A, MACGREGOR S J, et al.. An investigation of surface flashover across polymer and ceramic substrates[C]. Proceedings of 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, IEEE, 2000: 43-46.
    [18] FOURACRE R A, MACGREGOR S J, FULKER D J, et al.. Optical emission properties of pulsed surface discharges[J]. IEEE Transactions on Plasma Science, 2002, 30(5):1961-1966. doi: 10.1109/TPS.2002.806630
    [19] KNECHT B A, FRASER R D, WHEELER D J, et al.. Optical pumping of the XeF(C→A) and iodine 1.315-μm lasers by a compact surface discharge system[J]. Optical Engineering, 2003, 42(12):3612-3621. doi: 10.1117/1.1624849
    [20] 易爱平.多通道表面放电光泵浦源实验研究[D].长沙: 国防科技大学, 2002.

    YI A P. Experimental study on optical pumping source with multichannel surface discharge[D]. Changsha: National University of Defense Technology, 2002.(in Chinese)
    [21] 于力.光化学激励大功率重复频率XeF(C-A)激光研究[D].西安: 西北核技术研究所, 2007.

    YU L. Study on the high power photochemical XeF(C-A) laser with repetition mode[D]. Xi'an: Northwest Institute of Nuclear Technology, 2007.(in Chinese)
    [22] 黄超, 刘晶儒, 于力, 等.用于XeF蓝绿激光器的表面放电光泵浦源[J].强激光与粒子束, 2015, 27(8):081010. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201508010

    HUANG CH, LIU J R, YU L, et al.. Surface discharge optical pumping source for XeF blue-green laser[J]. High Power Laser and Particle Beams, 2015, 27(8):081010.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201508010
  • 加载中
图(9)
计量
  • 文章访问数:  1276
  • HTML全文浏览量:  390
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-02-02
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!