-
摘要: 数字图像相关测量中,相关计算前会人工选取散斑区域进行区域限定。随着工业自动化的发展,面对散斑区域形状越来越复杂以及大量散斑图片的测量需求,找到一种散斑区域自动提取方法至关重要。本文根据散斑的特征,对比多种常规边缘检测方法,提出了一种基于二阶梯度熵函数的散斑区域自动提取判定函数,并通过分析不同的散斑图片,确定了最佳子区熵尺寸区间以及在不同散斑图中的自适应阈值区间,最终通过连通区域分割完成对散斑区域的自动提取。文中采用实际拍摄的散斑图对该方法进行验证,实验结果表明:子区熵尺寸取10 pixel以上,该算法对散斑区域表现敏感;自适应阈值取图中最大梯度熵值的Q-1.25至Q范围内时,可以将散斑区域与背景区域有效分割。基本能完成对散斑区域的自动提取,达到了相关计算前散斑区域选择的目的。Abstract: In digital image correlation measurements, the speckle area is manually selected before the correlation calculation is performed to define the matching area. With the development of industrial automation, facing the complex shape of the speckle area and the need to measure a large number of speckle images, it is crucial to find an automatic area extraction method. According to the characteristics of speckles and by comparing various conventional edge detection methods, a decision function based on second-order gradient entropy is proposed for automatically detecting speckle regions in images. By analyzing different speckle images, the optimal sub-region entropy size interval and the adaptive threshold interval in different speckle patterns were determined and the automatic extraction of the speckle region were completed by using connected region segmentation. The method was verified by using the actual speckle pattern. The experimental results show that when the entropy size of the subregion is more than 10 pixel, the decision function is sensitive to the speckle area. When the adaptive threshold value is within the range of Q-1.25 to Q, the speckle area and the background area can be effectively separated. The automatic extraction of a speckle area can be completed and the selection of speckle area before correlation calculation is achieved.
-
Key words:
- digital image correlation /
- speckle /
- second-order gradient entropy /
- adaptive threshold
-
表 1 不同样式散斑图对应的二阶梯度熵值
Table 1. Second order entropy values corresponding to different types of speckle patterns
Picture Max(Q) Min(Q) Avg(Q) Diff(Q) Pic(a) 6.868 10 5.502 54 6.396 67 1.365 56 Pic(b) 5.218 34 3.965 52 4.793 77 1.252 82 Pic(c) 5.583 25 4.391 42 5.018 05 1.191 83 Pic(d) 4.746 89 3.782 02 4.348 52 0.964 87 Pic(e) 6.368 67 4.974 82 5.945 93 1.393 84 Avg 5.757 05 4.523 26 5.300 59 1.233 78 -
[1] 胡悦, 王永红, 鲍思源, 等.高温下数字图像相关散斑最优成像探究[J].中国光学, 2018, 11(5):728-735. http://www.chineseoptics.net.cn/CN/abstract/abstract9627.shtmlHU Y, WANG Y H, BAO S Y, et al.. Optimal imaging of digital image correlation speckle under high temperature[J]. Chinese Optics, 2018, 11(5):728-735.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9627.shtml [2] MBAREK T B, ROBERT L, HUGOT F, et al.. Mechanical behavior of wood-plastic composites investigated by 3D digital image correlation[J]. Journal of Composite Materials, 2011, 45(26):2751-2764. doi: 10.1177/0021998311410466 [3] WANG Y L, TANG J X, DAI ZH Y, et al.. Experimental study on mechanical properties and failure modes of low-strength rock samples containing different fissures under uniaxial compression[J]. Engineering Fracture Mechanics, 2018, 197:1-20. doi: 10.1016/j.engfracmech.2018.04.044 [4] 王永红, 但西佐, 胡悦, 等.基于高速数字图像相关的人车碰撞伤害实验研究[J].光电子·激光, 2017, 28(1):81-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201701013WANG Y H, DAN X Z, HU Y, et al.. Car-pedestrian impact test based on high speed digital image correlation[J]. Journal of Optoelectronics·Laser, 2017, 28(1):81-86.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201701013 [5] 王伟, 刘振邦, 包宇, 等.数字图像处理技术在扫描电化学显微镜中的应用[J].分析化学, 2018, 46(3):342-347. http://d.old.wanfangdata.com.cn/Periodical/fxhx201803007WANG W, LIU ZH B, BAO Y, et al.. Application of digital image processing technology in scanning electrochemical microscope[J]. Chinese Journal of Analytical Chemistry, 2018, 46(3):342-347. http://d.old.wanfangdata.com.cn/Periodical/fxhx201803007 [6] 张腾达, 卢荣胜, 杨蕾.DIC中亚像素位移测量的多项式曲面拟合法[J].激光杂志, 2016, 37(11):141-144. http://d.old.wanfangdata.com.cn/Periodical/jgzz201611034ZHANG T D, LU R SH, YANG L. Subpixel displacement registration using polynomial surface fitting in DIC[J]. Laser Journal, 2016, 37(11):141-144.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgzz201611034 [7] 姜锦虎, 王海凤, 刘诚.数字散斑图跟相关测量系统抗噪声干扰能力关系的研究—提高相关测量精度途径之一[C].第九届全国实验力学学术会议, 中国力学学会, 2000: 294-297.JIANG J H, WANG H F, LIU CH. Research on the relationship between digital speckle pattern and anti-noise ability of related measurement systems—one of the ways to improve the accuracy of related measurements[C]. National Conference on Experimental Mechanics, Chinese Society of Theoretical and Applied Mechanics, 2000: 294-297.(in Chinese) [8] 唐正宗, 梁晋, 肖振中, 等.大变形测量数字图像的种子点匹配方法[J].西安交通大学学报, 2010, 44(11):51-55. http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201011011TANG ZH Z, LIANG J, XIAO ZH ZH, et al.. Digital image correlation method based on seed point for large deformation measurement[J]. Journal of Xi'an Jiaotong University, 2010, 44(11):51-55.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201011011 [9] 苏勇, 张青川.数字图像相关的噪声导致系统误差及散斑质量评价标准[J].实验力学, 2017, 32(5):699-717. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylx201705012SU Y, ZHANG Q CH. Noise-induced bias and evaluation criterion of speckle quality in digital image correlation[J]. Journal of Experimental Mechanics, 2017, 32(5):699-717.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylx201705012 [10] 杜亚志, 王学滨, 冯威武, 等.基于一阶及二阶灰度梯度的散斑图质量评价方法[J].光学技术, 2017, 43(2):169-175. http://d.old.wanfangdata.com.cn/Periodical/gxjs201702017DU Y ZH, WANG X B, FENG W W, et al.. Method for speckle pattern quality assessment based on one-order and two-order intensity gradients[J]. Optical Technique, 2017, 43(2):169-175.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjs201702017 [11] 付瀚毅, 刘原原.高均匀性小孔径激光照明系统[J].液晶与显示, 2018, 33(7):548-554. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201807002FU H Y, LIU Y Y. High uniformity laser illumination system with small aperture[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(7):548-554.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201807002 [12] 于长淞, 方超.基于小波变换的ESPI图像去噪及边缘提取[J].液晶与显示, 2011, 26(6):818-822. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201106020YU CH S, FANG CH. ESPI image denoising and edge extraction based on wavelet transform[J]. Chinese Journal of Liquid Crystals and Displays, 2011, 26(6):818-822.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201106020 [13] 王灿进, 石宁宁, 孙涛.同态非局部滤波在激光主动成像散斑抑制中的应用研究[J].液晶与显示, 2016, 31(2):193-200. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201602011WANG C J, SHI N N, SUN T. Application of homomorphic non-local filters in speckle noise suppression for laser active imaging[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(2):193-200.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201602011 [14] 周心明, 兰赛.图像处理中几种边缘检测算法的比较[J].现代电力, 2000, 17(3):65-69. doi: 10.3969/j.issn.1007-2322.2000.03.013ZHOU X M, LAN S. Comparison of the edge detection algorithms in image processing[J]. Modern Electric Power, 2000, 17(3):65-69.(in Chinese) doi: 10.3969/j.issn.1007-2322.2000.03.013 [15] 方爱平, 田蓬勃, 贾怡, 等.最大熵原理在概率分布预测中的应用[J].物理与工程, 2017, 27(6):86-89, 94. doi: 10.3969/j.issn.1009-7104.2017.06.019FANG A P, TIAN P B, JIA Y, et al.. The application of the maximum entropy principle in the forecast for probability distribution[J]. Physics and Engineering, 2017, 27(6):86-89, 94.(in Chinese) doi: 10.3969/j.issn.1009-7104.2017.06.019 [16] 罗锦锋, 苏显渝.数字散斑的仿真建模与变形场测量[J].四川大学学报(自然科学版), 2009, 46(5):1347-1351. doi: 10.3969/j.issn.0490-6756.2009.05.27LUO J F, SU X Y. The simulation modeling and deformation field measurements of digital speckles[J]. Journal of Sichuan University(Natural Science Edition), 2009, 46(5):1347-1351. doi: 10.3969/j.issn.0490-6756.2009.05.27 [17] 王志勇, 王磊, 郭伟, 等.数字图像相关方法最优散斑尺寸[J].天津大学学报, 2010, 43(8):674-678. doi: 10.3969/j.issn.0493-2137.2010.08.003WANG ZH Y, WANG L, GUO W, et al.. Optimal size of speckle spot in digital image correlation method[J]. Journal of Tianjin University, 2010, 43(8):674-678. doi: 10.3969/j.issn.0493-2137.2010.08.003