留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积神经网络的候选区域优化算法

王春哲 安军社 姜秀杰 邢笑雪

王春哲, 安军社, 姜秀杰, 邢笑雪. 基于卷积神经网络的候选区域优化算法[J]. 中国光学(中英文), 2019, 12(6): 1348-1361. doi: 10.3788/CO.20191206.1348
引用本文: 王春哲, 安军社, 姜秀杰, 邢笑雪. 基于卷积神经网络的候选区域优化算法[J]. 中国光学(中英文), 2019, 12(6): 1348-1361. doi: 10.3788/CO.20191206.1348
WANG Chun-zhe, AN Jun-she, JIANG Xiu-jie, XING Xiao-xue. Region proposal optimization algorithm based on convolutional neural networks[J]. Chinese Optics, 2019, 12(6): 1348-1361. doi: 10.3788/CO.20191206.1348
Citation: WANG Chun-zhe, AN Jun-she, JIANG Xiu-jie, XING Xiao-xue. Region proposal optimization algorithm based on convolutional neural networks[J]. Chinese Optics, 2019, 12(6): 1348-1361. doi: 10.3788/CO.20191206.1348

基于卷积神经网络的候选区域优化算法

基金项目: 

国家自然科学基金 61805021

详细信息
    作者简介:

    王春哲(1989—), 男, 吉林松原人, 博士研究生, 2012年于长春大学获得学士学位, 2015年于长春理工大学获得硕士学位, 主要从事深度学习及目标检测方面的研究。E-mail:wangchunzhe163@sina.com

    安军社(1969—), 男, 陕西渭南人, 博士, 研究员, 1992年于北京航空航天大学获得学士学位, 1995年于北京科技大学获得硕士学位, 2004年于西北工业大学获得博士学位, 现为中国科学院国家空间科学中心研究员, 主要从事空间飞行器综合电子系统及深度学习方面的研究。E-mail:anjunshe@nssc.ac.cn

  • 中图分类号: TP394.1

Region proposal optimization algorithm based on convolutional neural networks

Funds: 

National Natural Science Foundation of China 61805021

More Information
  • 摘要: 在目标检测中,通常使用候选区域提高目标的检测效率。为解决当前候选区域质量较低的问题,本文将卷积边缘特征、显著性及目标位置信息引入到候选区域算法中。首先,利用卷积神经网络将待检测图像生成更富有语义信息的边缘特征,并通过边缘点聚合及边缘组相似性策略,获取每个滑动窗口的边缘信息得分;其次,利用显著性目标的局部特征,统计每个滑动窗口中的目标显著性得分;第三,根据目标可能出现的位置,计算每个滑动窗口中的目标位置信息得分;最后,利用边缘信息、显著性及位置信息的分数确定候选区域。在PASCAL VOC 2007验证集上进行实验,给定10 000个候选区域,交并比取0.7时,所提算法的召回率为90.50%,较Edge Boxes算法提高了3%。每张图像的运行时间大约为0.76 s。结果表明,本文算法可快速产生较高质量的候选区域。

     

  • 图 1  所提算法实现框图

    Figure 1.  Block diagram of the proposed algorithm

    图 2  RCF结构

    Figure 2.  The structure of RCF

    图 3  给定一张图像X

    Figure 3.  An given image X

    图 4  X的边缘特征图

    Figure 4.  Edge feature maps of X

    图 5  图像块的卡方距离

    Figure 5.  The chi-square distance of image patches

    图 6  选取S图像块的策略

    Figure 6.  Selection strategy of S image patch

    图 7  目标位置与目标数目关系。(a)VOC 2007数据集;(b)VOC 2012数据集

    Figure 7.  Relationship between the object′s location and object′s number. (a) VOC 2007 dataset; (b) VOC 2012 dataset

    图 8  参数αβ与召回率的关系

    Figure 8.  Relationship of the parameters α, β and recall

    图 9  参数w与召回率的关系

    Figure 9.  Relationship of the parameter w and recall

    图 10  不同候选框数下召回率与交并比之间的关系

    Figure 10.  Relationship between recall and IoU at different number of proposals

    图 11  不同交并比的候选框数与召回率的关系

    Figure 11.  Recall versus number of proposals at different IoUs

    图 12  13种算法不同位置目标的召回率与交并比的关系

    Figure 12.  Recall vs IoU curves of objects at different locations by 13 kinds of algorithms

    图 13  不同交并比下候选框数与召回率的关系

    Figure 13.  Recall versus number of proposals at different IoUs

    图 14  本文算法在PASCAL VOC 2007测试集的召回率

    Figure 14.  Recall on the PASCAL VOC 2007 test set for proposed algorithm in this paper

    图 15  不同宽高比时测试集及验证集上的召回率

    Figure 15.  The recalls at different aspect ratios of test set and validation set

    图 16  所提算法对部分目标的检测结果

    Figure 16.  Object detection results of some objects detected by proposed algorithm

    图 17  漏检目标的尺寸与漏检目标数目间的关系

    Figure 17.  The relation of the size of undetected objects and the number of undetected objects

    表  1  边缘组算法描述

    Table  1.   The description of edge group algorithm

    下载: 导出CSV

    表  2  精调滑动窗口策略

    Table  2.   The strategy of refining sliding windows

    下载: 导出CSV

    表  3  VOC 2007数据集特性

    Table  3.   The properties of VOC 2007 dataset

    数据集 训练集 验证集 测试集
    图像数 2 501 2 510 4 952
    目标数 6 301 6 307 12 032
    下载: 导出CSV

    表  4  交并比为0.7时13种算法的实验结果

    Table  4.   The experiment results of 13 kinds of algorithms with IoU of 0.7

    Algorithms AUC 45% 60% 75% R1000 R2000 R10000 mAP t/s
    Object-ness 0.27 -- -- -- 37.68% 37.89% 37.93% 51.4 3
    BING 0.20 -- -- -- 27.04% 27.39% 28.14% 49.0 0.2
    CPMC 0.41 86 475 -- 62.58% 62.59% 62.60% 57.1 250
    SS 0.40 171 530 1 812 68.13% 76.13% 89.12% 59.5 10
    EB 0.46 77 234 804 77.39% 83.25% 87.19% 60.4 0.25
    Rantalankila 0.23 489 1 712 -- 55.79% 61.21% 68.94% 57.9 10
    Rand. Prim′s 0.35 274 950 4 095 60.61% 68.52% 79.33% 57.6 1
    MCG 0.48 60 240 1 116 74.14% 79.58% 80.53% 60.3 30
    Endres 0.44 75 432 -- 63.93% 64.69% 64.88% 57.4 100
    Geodesic 0.35 266 630 2 491 66.45% 73.65% 81.05% 57.5 1
    Rigor 0.30 600 997 1 948 60.08% 75.59% 75.77% 58.4 10
    Improved EdgeBoxes 0.46 80 265 802 77.50% 84.15% 89.25% 60.8 0.43
    本文算法 0.47 103 276 799 77.87% 84.73% 90.50% 61.3 0.764 9
    下载: 导出CSV
  • [1] 梁华, 宋玉龙, 钱锋, 等.基于深度学习的航空对地小目标检测[J].液晶与显示, 2018, 33(9):793-800. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809011

    LIANG H, SONG Y L, QIAN F, et al.. Detection of small target in aerial photography based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9):793-800.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201809011
    [2] 李艳荻, 徐熙平.基于超像素时空特征的视频显著性检测方法[J].光学学报, 2019, 39(1):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201901025

    LI Y D, X X P. Video saliency detection method based on spatiotemporal features of superpixels[J]. Acta Optica Sinica, 2019, 39(01):1-8.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201901025
    [3] FATTAL A, KARG M, SCHARFENBERGER C, et al.. Saliency-guided region proposal network for CNN based object detection[C]. IEEE Conference on Intelligent Transportation Systems, Yokohama, Japan.2017: 1-8.
    [4] UIJLINGS J, K VAN DE SANDE, GEVERS T, et al.. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3216de1927eb16418ad3bdf8d4bcd8bd
    [5] ALEXE B, DESELAERS T, FERRARI V. Measuring the objectness of image windows[J]. IEEE Transactions on Software Engineering, 2012, 34(11):2189-2202. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201605006
    [6] CHENG M M, LIU Y, LIN W Y, et al.. BING: Binarized Normed Gradients for Objectness Estimation at 300fps[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA.2014(1): 3286-3293.
    [7] ZITNICK C L, DOLLAR P. Edge boxes: locating object proposals from edges[C]. Proceedings of 13th European Conference on Computer Vision. Zurich, Switzerland, 2014, 8689: 391-405.
    [8] JIANG S, LIANG S, CHEN C, et al.. Class agnostic image common object detection[J]. EEE Transactions on Image Processing, 2019, 28(6):2836-2846.
    [9] HE K M, GEORGIA G, PIOTR D, et al.. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy. 2017, (1): 2980-2988.
    [10] 丁鹏, 张叶, 贾平, 等.基于视觉显著性的海面舰船检测技术[J].电子学报, 2018, 46(1):127-134. http://d.old.wanfangdata.com.cn/Periodical/dianzixb201801018

    DING P, ZHANG Y, JIA P, et al.. Ship detection on sea surface based on visual saliency[J]. Acta Electronica Sinica, 2018, 46(1):127-134.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dianzixb201801018
    [11] 李宇, 刘雪莹, 张洪群, 等.基于卷积神经网络的光学遥感图像检索[J].光学 精密工程, 2018, 26(1):200-207. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801024

    LI Y, LIU X Y, ZHANG H Q, et al.. Optical remote sensing image retrieval based on convolutional neural networks[J]. Opt. Precision Eng., 2018, 26(1):200-207.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801024
    [12] LIU Y, CHENG M M, HU X W, et al. Richer convolutional features for edge detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu, Hawaii, USA.2017, (1): 5872-5881.
    [13] ISHIKURA K, KURITA N, CHANDLER D M, et al.. Saliency detection based on multiscale extrema of local perceptual color differences[J]. IEEE Transactions on Image Processing, 2018, 27(2):703-717.
    [14] KUANG P J, ZHOU Z H, WU D C. Improved edge boxes with object saliency and location awards[J]. IEICT Transactions on Information and Systems, 2016, E99D(2):488-495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_2188038
    [15] CARREIRA J, SMINCHISESCU C. CPMC:automatic object segmentation using constrained parametric min-cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1312-1328. http://d.old.wanfangdata.com.cn/Periodical/xlyj200906002
    [16] 邝沛江.基于改进Edge Boxes的物体检测算法的研究[D].广州: 华南理工大学, 2017

    KUANG P J. Research on algorithm in object detection based on improved edge boxes[D]. Guangzhou: South China University of Technology, 2017.(in Chinese)
    [17] MANEN S, GUILLAUMIN M, VAN GOOL L. Prime object proposals with randomized prim's algorithm[C]. Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia. 2013: 2536-2543.
    [18] RANTALANKILA P, KANNALA J, RAHTU E. Generating object segmentation proposals using global and local search[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA.2014: 2417-2424.
    [19] PONT-TUSET J, ARBELAEZ P, BARRON J T, et al.. Multiscale combinatorial grouping for image segmentation and object proposal generation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(1):128-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=303f23167a0a55805d66a6d951514dca
    [20] ENDRES I, HOIEM D. Category-independent object proposals with diverse ranking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2):222-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=004584be68a696c66a884743028962f0
    [21] PHILIPP KRAHENBUHL, KOLTUN V. Geodesic object proposals[C]. 2014 European Conference on Computer Vision. Zurich, Switzerland, 2014: 725-739.
    [22] HUMAYUN A, LI F, REHG J M. Rigor: recycling inference in graph cuts for generating object regions[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA. 2014: 2417-2424.
    [23] DANELLJAN M, HÄGER G, KHAN F S, et al.. Convolutional features for correlation filter based visual tracking[C]. IEEE International Conference on Computer Vision Workshop, Santiago, Chile. 2015: 621-629.
    [24] HOSANG J, BENENSON R, DOLLÁR P, et al.. What makes for effective detection proposals[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(4):814-830. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14eeeed4ff44e76fe35c0417c1062ae5
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  2225
  • HTML全文浏览量:  912
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-28
  • 修回日期:  2019-06-14
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回