留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢原子在少周期强激光场中阈上电离的电子波包干涉图像

郭志坚 孙乾

郭志坚, 孙乾. 氢原子在少周期强激光场中阈上电离的电子波包干涉图像[J]. 中国光学(中英文), 2019, 12(6): 1376-1384. doi: 10.3788/CO.20191206.1376
引用本文: 郭志坚, 孙乾. 氢原子在少周期强激光场中阈上电离的电子波包干涉图像[J]. 中国光学(中英文), 2019, 12(6): 1376-1384. doi: 10.3788/CO.20191206.1376
GUO Zhi-jian, SUN Qian. Electron wave packet interference images in above-threshold ionization of hydrogen atoms by few-cycle intense laser fields[J]. Chinese Optics, 2019, 12(6): 1376-1384. doi: 10.3788/CO.20191206.1376
Citation: GUO Zhi-jian, SUN Qian. Electron wave packet interference images in above-threshold ionization of hydrogen atoms by few-cycle intense laser fields[J]. Chinese Optics, 2019, 12(6): 1376-1384. doi: 10.3788/CO.20191206.1376

氢原子在少周期强激光场中阈上电离的电子波包干涉图像

doi: 10.3788/CO.20191206.1376
基金项目: 

国家自然科学基金资助项目 11565018

甘肃省教育厅高等学校创新能力项目 2019A-112

陇东学院博士基金资助项目 XYBY1601

陇东学院青年科技创新项目 XYZK1706

详细信息
    作者简介:

    郭志坚(1991—), 男, 甘肃庆阳人, 硕士, 讲师, 2011年、2014年于西北师范大学分别获得学士、硕士学位, 现为陇东学院物理系讲师, 主要从事强场电离方面的研究。E-mail:zjguo@outlook.com

  • 中图分类号: O436

Electron wave packet interference images in above-threshold ionization of hydrogen atoms by few-cycle intense laser fields

Funds: 

National Natural Science Foundation of China 11565018

Innovation Ability Project of Colleges and Universities of Gansu Provincial Department of Education 2019A-112

Doctoral Foundation of Longdong University XYBY1601

Longdong University Youth Science and Technology Innovation Project XYZK1706

More Information
  • 摘要: 采用电子波包干涉方法研究了长程库仑势以及再散射电子对氢原子在少周期强激光场中阈上电离的影响。首先,利用强场近似及Coulomb-Volkov近似结合时间窗函数,模拟了氢原子在波长为800 nm且脉宽为5 fs的线性极化激光场中单电离的周期内干涉及周期间干涉图像,发现在长程库仑势作用下周期内干涉及周期间干涉共同作用形成了二维动量谱中的部分扇形结构条纹,其余部分扇形条纹的形成与再散射电子有关。然后,通过数值求解含时薛定谔方程计算了深度隧穿电离机制下氢原子的二维动量谱,在二维动量谱中出现了明显的径向条纹。研究结果表明,该径向条纹的产生与长程库仑势无关,是再散射电子波包干涉形成的。

     

  • 图 1  激光场的电场及矢势,I=4.0×1014 W/cm2, λ=800 nm, CEP=0, Γ=5 fs

    Figure 1.  Electric field and vector potential of laser field with I=4.0×1014 W/cm2, λ=800 nm, CEP=0, Γ=5 fs

    图 2  氢原子电子波包干涉形成的二维动量谱

    Figure 2.  2D momentum spectra of H atom with EPs interferences

    图 3  CVA方法得到的电子波包干涉形成的光电子能量谱,激光参数与图 1相同。(a)周期内干涉;(b)周期间干涉;(c)周期内干涉和周期间干涉相互作用的结果

    Figure 3.  Photoelectron energy spectra of EPs interferences by CVA under the same laser field as shown in Fig. 1. (a)Intracycle interference; (b)intercycle interference; (c) intercycle and intracycle interferences

    图 4  H原子二维光电子动量谱,激光参数与图 1相同

    Figure 4.  2D photoelectron momentum spectra of H atom under the same laser field as shown in Fig. 1

    图 5  H原子能量谱,激光参数与图 1相同

    Figure 5.  Photoelectron energy spectra of H atom with under the same laser field as shown in Fig. 1

    图 6  H原子TDSE二维光电子动量谱,I=4.0×1014 W/cm2λ=800 nm,CEP=0。(a)、(c)及(e)为考虑库仑势的计算结果,(b)、(d)及(f)为考虑短程势的计算结果;(a)和(b)脉冲持续时间为2 cycles;(c)和(d)为4 cycles;(e)和(f)为8 cycles

    Figure 6.  TDSE 2D photoelectron momentum spectra of H atom when I=4.0×1014 W/cm2, λ=800 nm and CEP=0. (a)、(c) and (e) calculated with coulomb potential, (b)、(d) and (f) calculated without coulomb potential; (a) and (b) with 2 cycles pulse; (c) and (d) with 4 cycles pulse; (e) and (f) with 8 cycles pulse

    图 7  H原子二维光电子动量谱及对应的电场和矢势,激光参数与图 6(a)相同。(a)电场和矢势;(b)SFA结果;(c)CVA结果;(d)SFA2结合时间窗的结果;(e)SFA2结果

    Figure 7.  Electric field and vector potential, and 2D photoelectron momentum spectra of H atom under the same laser field as shown in Fig. 6(a). (a)Electric field and vector potential; (b)result from SFA; (c)result from CVA; (d)result from SFA2 with time windows; (e)result from SFA2

  • [1] LIN C D, LE A T, CHEN ZH J, et al.. Strong-field rescattering physics—self-imaging of a molecule by its own electrons[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 2010, 43(12):122001. doi: 10.1088/0953-4075/43/12/122001
    [2] 仝小刚, 王国利, 周效信, 等.利用高能光电子的非对称性确定少周期激光的载波相位[J].光学学报, 2016, 36(3):0319002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201603025

    TONG X G, WANG G L, ZHOU X X, et al.. Carrier phase determination for few-cycle laser pulses based on asymmetry of ionized high-energy electrons[J]. Acta Optica Sinica, 2016, 36(3):0319002.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201603025
    [3] LINDNER F, SCHÄTZEL M G, WALTHER H, et al.. Attosecond double-slit experiment[J]. Physical Review Letters, 2005, 95(4):040401. doi: 10.1103/PhysRevLett.95.040401
    [4] GOPAL R, SIMEONIDIS K, MOSHAMMER R, et al.. Three-dimensional momentum imaging of electron wave packet interference in few-cycle laser pulses[J]. Physical Review Letters, 2009, 103(5):053001. doi: 10.1103/PhysRevLett.103.053001
    [5] BIAN X B, HUISMANS Y, SMIRNOVA O, et al.. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses[J]. Physical Review A, 2011, 84(4):043420. doi: 10.1103/PhysRevA.84.043420
    [6] 陈建宏, 郑小平, 张正荣, 等.氢负离子在少周期激光场中解离时的干涉效应[J].物理学报, 2016, 65(8):083202. http://d.old.wanfangdata.com.cn/Periodical/wlxb201608013

    CHEN J H, ZHENG X P, ZHANG ZH R, et al.. Interference effect in the photodetachment from H- ion in a few-cycle laser pulse[J]. Acta Physica Sinica, 2016, 65(8):083202.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201608013
    [7] ARBÓ D G, ISHIKAWA K L, SCHIESSL K, et al.. Intracycle and intercycle interferences in above-threshold ionization: the time grating[J]. Physical Review A, 2010, 81(2):021403(R). doi: 10.1103/PhysRevA.81.021403
    [8] ARBÓ D G, ISHIKAWA K L, SCHIESSL K, et al.. Diffraction at a time grating in above-threshold ionization: the influence of the Coulomb potential[J]. Physical Review A, 2010, 82(4):043426. doi: 10.1103/PhysRevA.82.043426
    [9] SONG X H, XU J W, LIN CH, et al.. Attosecond interference induced by Coulomb-field-driven transverse backward-scattering electron wave packets[J]. Physical Review A, 2017, 95(3):033426. doi: 10.1103/PhysRevA.95.033426
    [10] YANG W F, ZHANG H T, LIN CH, et al.. Momentum mapping of continuum-electron wave-packet interference[J]. Physical Review A, 2016, 94(4):043419. doi: 10.1103/PhysRevA.94.043419
    [11] BLAGA C I, CATOIRE F, COLOSIMO P, et al.. Strong-field photoionization revised[J]. Nature Physics, 2009, 5(5):335-338. doi: 10.1038/nphys1228
    [12] QUAN W, LIN Z, WU M, et al.. Classical aspects in above-threshold ionization with a midinfrared strong laser field[J]. Physical Review Letters, 2009, 103(9):093001. doi: 10.1103/PhysRevLett.103.093001
    [13] GUO L, HAN S S, LIU X, et al.. Scaling of the low-energy structure in above-threshold ionization in the tunneling regime:theory and experiment[J]. Physical Review Letters, 2013, 110(1):013001. doi: 10.1103/PhysRevLett.110.013001
    [14] MORISHITA T, CHEN ZH J, WATANABE S, et al.. Two-dimensional electron momentum spectra of argon ionized by short intense lasers: comparison of theory with experiment[J]. Physical Review A, 2007, 75(2):023407. doi: 10.1103/PhysRevA.75.023407
    [15] CHEN ZH J, MORISHITA T, LE A T, et al.. Analysis of two-dimensional high-energy photoelectron momentum distributions in the single ionization of atoms by intense laser pulses[J]. Physical Review A, 2007, 76(4):043402. doi: 10.1103/PhysRevA.76.043402
    [16] GUO ZH J, CHEN ZH J, ZHOU X X. Origin of diffraction fringes in two-dimensional photoelectron momentum distributions for single ionization of atoms in few-cycle intense laser pulses[J]. Chinese Physics B, 2014, 23(4):043201. doi: 10.1088/1674-1056/23/4/043201
    [17] ARBÓ D G, NAGELE S, TONG X M, et al.. Interference of electron wave packets in atomic ionization by subcycle sculpted laser pulses[J]. Physical Review A, 2014, 89(4):043414. doi: 10.1103/PhysRevA.89.043414
    [18] 肖相如, 王慕雪, 黎敏, 等.强激光场中原子单电离的半经典方法[J].物理学报, 2016, 65(22):220203. doi: 10.7498/aps.65.220203

    XIAO X R, WANG M X, LI M, et al.. Semiclassical methods for strong field ionization of atoms[J]. Acta Physica Sinica, 2016, 65(22):220203.(in Chinese) doi: 10.7498/aps.65.220203
    [19] CHEN ZH J, MORISHITA T, LE A T, et al.. Analysis of two-dimensional photoelectron momentum spectra and the effect of the long-range Coulomb potential in single ionization of atoms by intense lasers[J]. Physical Review A, 2006, 74(5):053405. doi: 10.1103/PhysRevA.74.053405
  • 加载中
图(7)
计量
  • 文章访问数:  1415
  • HTML全文浏览量:  561
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-03
  • 修回日期:  2019-01-30
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!