留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深紫外非线性光学晶体及全固态深紫外相干光源研究进展

王晓洋 刘丽娟

王晓洋, 刘丽娟. 深紫外非线性光学晶体及全固态深紫外相干光源研究进展[J]. 中国光学, 2020, 13(3): 427-441. doi: 10.3788/CO.2020-0028
引用本文: 王晓洋, 刘丽娟. 深紫外非线性光学晶体及全固态深紫外相干光源研究进展[J]. 中国光学, 2020, 13(3): 427-441. doi: 10.3788/CO.2020-0028
WANG Xiao-yang, LIU Li-juan. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J]. Chinese Optics, 2020, 13(3): 427-441. doi: 10.3788/CO.2020-0028
Citation: WANG Xiao-yang, LIU Li-juan. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J]. Chinese Optics, 2020, 13(3): 427-441. doi: 10.3788/CO.2020-0028

深紫外非线性光学晶体及全固态深紫外相干光源研究进展

doi: 10.3788/CO.2020-0028
基金项目: 国家自然科学基金重大科研仪器研制项目(No. 21527804)
详细信息
    作者简介:

    王晓洋(1967—),男,江苏镇江人,正高级工程师,2002年于武汉理工大学获得硕士学位,现为中国科学院理化技术研究所正高级工程师,主要从事功能晶体的研究和应用工作。E-mail: xywang@mail.ipc.ac.cn

  • 中图分类号: O734

Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources

Funds: Supported by Project of Major Scientific Instruments by National Natural Science Foundation of China(No. 21527804)
More Information
  • 摘要: 全固态深紫外相干光源在前沿科学、高技术等领域均有重要应用。产生全固态深紫外相干光源的一种有效而可行的技术途径是将商业化的可见、近红外全固态激光作为基频光源,通过非线性光学晶体的多级变频技术产生深紫外激光。本文系统地介绍了深紫外非线性光学晶体及全固态深紫外相干光源的研究进展。主要以KBBF晶体为代表,详细介绍了发现KBBF晶体的过程,晶体生长技术,棱镜耦合器件技术,KBBF晶体的主要光学性质以及产生深紫外相干光源的能力,同时证实了KBBF晶体是目前能使用直接倍频方法实现深紫外激光输出的非线性光学晶体。此外,文中还详细介绍了基于KBBF晶体及棱镜耦合技术的深紫外相干光源的应用情况,尤其是在超高分辨率光电子能谱仪方面的应用及取得的重要成果。最后,展望了深紫外非线性光学晶体及全固态深紫外激光技术的发展方向。
  • 图  1  KBBF晶体结构

    Figure  1.  Structure of KBBF crystal

    图  2  助熔剂法生长的KBBF晶体[33]

    Figure  2.  As-grown KBBF crystal using flux method[33]

    图  3  水热法生长的KBBF晶体

    Figure  3.  As-grown KBBF crystal using hydrothermal method

    图  4  水热法KBBF晶体中的两种结构

    Figure  4.  Two structures in KBBF crystals using hydrothermal method

    图  5  棱镜耦合器件的原理图

    Figure  5.  Principle diagram of prism coupled device

    图  6  沿a方向切割的KBBF晶坯

    Figure  6.  Crystal blank of KBBF cut along the a axis

    图  7  钛宝石激光五倍频光路示意图[41]

    Figure  7.  Schematic diagram of titanium sapphire laser fifth harmonic generation frequency optical path system[41]

    图  8  (a) 钛宝石激光四倍频输入功率和五倍频输出功率[41];(b)五倍频功率和四倍频功率比值[41]

    Figure  8.  (a) 5ω output power and the 4ω input power for titanium sapphire laser[41]; (b) the ratio of the 5ω output power to the 4ω input power[41]

    图  9  165 nm激光输出光路示意图[43]

    Figure  9.  Schematic diagram of frequency conversion system with the output wavelength of 165 nm[43]

    图  10  后棱镜为布儒斯特角切割的器件实物图

    Figure  10.  Physical graph of KBBF-PCD with a Brewster cut back prism

    图  11  165 nm倍频光功率和330 nm激光输入功率的关系[43]

    Figure  11.  DUV output power at 165 nm versus UV pump power at 330 nm[43]

    图  12  (a)深度光胶棱镜耦合器件示意图及(b)带铜制水冷套的棱镜耦合器件[46]

    Figure  12.  (a) Schematic diagram of the deep-bonding KBBF-PCD and (b) copper water-cooled holder of KBBF-PCD[46]

    图  13  177.3 nm倍频光功率和354.7 nm激光输入功率的关系(圆圈),实线(晶体有吸收)和虚线(晶体无吸收)为理论值[46]

    Figure  13.  The 177.3 nm output power as a function of the input power (open circles);theoretical output values are shown as the solid line (with absorption) and the dashed line (without absorption), respectively[46]

    图  14  连续波193 nm的光路示意图[48]

    Figure  14.  Schematic diagram of optical path of the 193 nm laser source[48]

    图  15  193 nm倍频光功率和386 nm激光输入功率的关系[48]

    Figure  15.  Output power of 193 nm versus pump power at 386 nm laser[48]

    表  1  常见非线性光学晶体性能[13]

    Table  1.   The properties of common nonlinear optical crystals[13]

    晶体点群透过范围/nm双折射Δn@1064 nm倍频系数dij/pm·V−1最短倍频波长/nm
    KTPmm2350~4 5000.089d31=1.4500
    BBO3 m189~3 3000.12d22=1.6205
    LBOmm2150~2 6000.04d31=0.96278
    d32=1.04
    d33=0.06
    CBO222166~3 4000.053d14=1.15273
    CLBO${\overline 4}2\;{\rm m}$180~2 7500.05d36=0.95238
    KABO32180~3 7800.068d11=0.48225
    KBBF32147~3 6600.080d11=0.49161
    RBBF32151~3 5000.075d11=0.45170
    下载: 导出CSV

    表  2  用于光电子能谱仪的3种深紫外光源比较[50]

    Table  2.   The comparison of properties of three different DUV light sources applied to photoemission spectrometer[50]

    光源全固态深紫外激光同步辐射光源气体放电光源
    能量分辨率/meV0.261~51.2
    光子能量/eV5.4~86~100连续变化21.1(He)
    运转方式ns, ps, fs(1 Hz~1 GHz)ns, ps,(5~500 MHz)连续
    光子流通量(photon/s)1014~10151010~1012~1012
    光子流通量密度(photon/s·cm21019~10201012~1014<1014
    极化方向可调可调无极化
    探测深度/mm(表面/体效应)10 体效应0.5~2表面效应~0.5 表面效应
    成本非常高
    下载: 导出CSV
  • [1] 柴燕, 毕勇, 颜博霞, 等. 全球激光显示技术专利分布格局与态势分析[J]. 液晶与显示,2011,26(3):329-333. doi: 10.3788/YJYXS20112603.0329

    CHAI Y, BI Y, YAN B X et al. Distribution pattern and trend analysis on global laser display technology[J]. Chinese Journal of Liquid Crystals and Displays, 2011, 26(3): 329-333. (in Chinese) doi: 10.3788/YJYXS20112603.0329
    [2] 李继军, 聂晓梦, 甄威, 等. 显示技术比较及新进展[J]. 液晶与显示,2018,33(1):74-84. doi: 10.3788/YJYXS20183301.0074

    LI J J, NIE X M, ZEN W, et al. New developments and comparisons in display technology[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(1): 74-84. (in Chinese) doi: 10.3788/YJYXS20183301.0074
    [3] FRANKEN P A, HILL A E, PETERS C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-120. doi: 10.1103/PhysRevLett.7.118
    [4] BASS M, FRANKEN P A, HILL A E, et al. Optical mixing[J]. Physical Review Letters, 1962, 8(1): 18. doi: 10.1103/PhysRevLett.8.18
    [5] WOODBURY E J, NG W K. Ruby laser operation in the near IR[J]. Proceedings of IRE, 1962, 50(11): 2367.
    [6] GIORDMAINE J A, MILLER R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 1965, 14(24): 973-976. doi: 10.1103/PhysRevLett.14.973
    [7] BLOEMBERGEN N. Nonlinear Optics[M]. New York: Benjamin, 1965.
    [8] CHEN C T. Development of New NLO Crystals in the Borate Series[M]. Switzerland: Plenum Press, 1993.
    [9] CHEN CH T, WU B CH, JIANG A D, et al. A new-type ultraviolet SHG crystal—β-BaB2O4[J]. Science in China Series B, 1985, 28(3): 235-243.
    [10] CHEN CH T, WU Y CH, JIANG A D, et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B, 1989, 6(4): 616-621. doi: 10.1364/JOSAB.6.000616
    [11] 王丽荣, 张国春, 冯景程, 等. La2CaB10O19晶体高效紫外激光输出研究[J]. 发光学报,2020,41(2):140-145. doi: 10.3788/fgxb20204102.0140

    WANG L R, ZHANG G C, FENG J CH, et al. Highly efficient UV laser output of La2CaB10O19 crystal[J]. Chinese Journal of Luminescence, 2020, 41(2): 140-145. (in Chinese) doi: 10.3788/fgxb20204102.0140
    [12] 崔建丰, 高涛, 张亚男, 等. 瓦级激光二极管端面抽运351 nm紫外激光器[J]. 发光学报,2016,37(11):1367-1371. doi: 10.3788/fgxb20163711.1367

    CUI J F, GAO T, ZHANG Y N, et al. Watt-class laser diode end-pumped 351 nm ultraviolet laser[J]. Chinese Journal of Luminescence, 2016, 37(11): 1367-1371. (in Chinese) doi: 10.3788/fgxb20163711.1367
    [13] 尼科戈相(俄). 非线性光学晶体: 一份完整的总结[M]. 王继扬, 译. 北京: 高等教育出版社, 2009.

    NIKOGOSYAN D N. Nonlinear Optical Crystals: A Complete Survey[M]. WANG J Y, trans. Beijing: Higher Education Press, 2009. (in Chinese)
    [14] PETROV V, ROTERMUND F, NOACK F. Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8·4H2O[J]. Electronics Letters, 1998, 34(18): 1748-1750. doi: 10.1049/el:19981223
    [15] PETROV V, ROTERMUND F, NOACK F, et al. Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm[J]. Journal of Applied Physics, 1998, 84(11): 5887-5892. doi: 10.1063/1.368904
    [16] JONES-BEY H. Deep-UV applications await improved nonlinear optics[J]. Laser Focus World, 1998, 34(8): 127-131.
    [17] 何奇, 樊君, 胡晓云, 等. NaYF4: Er3+的水热合成及其紫外上转换发光性能[J]. 发光学报,2012,33(2):122-127. doi: 10.3788/fgxb20123302.0122

    HE Q, FAN J, HU X Y, et al. Hydrothermal synthesis and its ultraviolet up conversion light emitting property[J]. Chinese Journal of Luminescence, 2012, 33(2): 122-127. (in Chinese) doi: 10.3788/fgxb20123302.0122
    [18] KURTZ S K, PERRY T T. A powder technique for the evaluation of nonlinear optical materials[J]. Journal of Applied Physics, 1968, 39(8): 3798-3813. doi: 10.1063/1.1656857
    [19] SHI G Q, WANG Y, ZHANG F F, et al. Finding the next deep-Ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648. doi: 10.1021/jacs.7b05943
    [20] WANG X F, WANG Y, ZHANG B B, et al. CsB4O6F: A congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units[J]. Angewandte Chemie International Edition, 2017, 56(45): 14119-14123. doi: 10.1002/anie.201708231
    [21] PENG G, YE N, LIN ZH SH, et al. NH4Be2BO3F2 and γ-Be2BO3F: overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 57(29): 8968-8972. doi: 10.1002/anie.201803721
    [22] CHEN CH T, WANG G L, WANG X Y, et al. Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications[J]. Applied Physics B, 2009, 97(1): 9-25. doi: 10.1007/s00340-009-3554-4
    [23] CHEN CH T, LUO S Y, WANG X Y, et al. Deep UV nonlinear optical crystal: RbBe2(BO3)F2[J]. Journal of the Optical Society of America B, 2009, 26(8): 1519-1525. doi: 10.1364/JOSAB.26.001519
    [24] CHEN CH T, WU Y CH, LI R K. The development of new NLO crystals in the borate series[J]. Journal of Crystal Growth, 1990, 99(1-4): 790-798. doi: 10.1016/S0022-0248(08)80028-0
    [25] CHEN CH T, WU Y CH, LI R K. The relationship between the structural type of anionic group and SHG effect in boron-oxygen compounds[J]. Chinese Physics Letters, 1985, 2(9): 389-392. doi: 10.1088/0256-307X/2/9/002
    [26] FRENCH R H, LING J W, OHUCHI F S, et al. Electronic structure of β-BaB2O4 and LiB3O5 nonlinear optical crystals[J]. Physical Review B, 1991, 44(16): 8496-8502. doi: 10.1103/PhysRevB.44.8496
    [27] LI R K. The interpretation of UV absorption of borate glasses and crystals[J]. Journal of Non-Crystalline Solids, 1989, 111(2-3): 199-204. doi: 10.1016/0022-3093(89)90281-0
    [28] BATSANOVA L R, EGOROV V A, NIKOLEVA, A V. Beryllium fluoroborate[J]. Dokl. Akad. Nauk SSSR, 1968, 178: 1317-1319.
    [29] CHEN CH T, WANG Y B, XIA Y N, et al. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach[J]. Journal of Applied Physics, 1995, 77(6): 2268-2272. doi: 10.1063/1.358814
    [30] XIA Y N, CHEN CH T, TANG D Y, et al. New nonlinear optical crystals for UV and VUV harmonic generation[J]. Advanced Materials, 1995, 7(1): 79-81. doi: 10.1002/adma.19950070118
    [31] CHEN CH T, XU Z Y, DENG D Q, et al. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal[J]. Applied Physics Letters, 1996, 68(21): 2930-2932. doi: 10.1063/1.116358
    [32] WANG J Y, ZHANG CH Q, LIU Y G, et al. Growth and properties of KBe2BO3F2 crystal[J]. Journal of Materials Research, 2003, 18(10): 2478-2485. doi: 10.1557/JMR.2003.0345
    [33] WANG X Y, YAN X, LUO S Y, et al. Flux growth of large KBBF crystals by localized spontaneous nucleation[J]. Journal of Crystal Growth, 2011, 318(1): 610-612. doi: 10.1016/j.jcrysgro.2010.11.176
    [34] YE N, TANG D Y. Hydrothermal growth of KBe2BO3F2 crystals[J]. Journal of Crystal Growth, 2006, 293(2): 233-235. doi: 10.1016/j.jcrysgro.2006.05.038
    [35] MCMILLEN C D, KOLIS J W. Hydrothermal crystal growth of ABe2BO3F2 (A=K, Rb, Cs, Tl) NLO crystals[J]. Journal of Crystal Growth, 2008, 310(7-9): 2033-2038. doi: 10.1016/j.jcrysgro.2007.11.193
    [36] ZHOU H T, HE X L, ZHOU W N, et al. Hydrothermal growth of KBBF crystals from KOH solution[J]. Journal of Crystal Growth, 2011, 318(1): 613-617. doi: 10.1016/j.jcrysgro.2010.08.036
    [37] YU J Q, LIU L J, JIN SH F, et al. Superstructure and stacking faults in hydrothermal-grown KBe2BO3F2 crystals[J]. Journal of Solid State Chemistry, 2011, 184(10): 2790-2793. doi: 10.1016/j.jssc.2011.08.025
    [38] SANG Y H, YU D H, AVDEEV M, et al. X-ray and neutron diffraction studies of flux and hydrothermally grown nonlinear optical material KBe2BO3F2[J]. CrystEngComm, 2012, 14(18): 6079-6084. doi: 10.1039/c2ce25828e
    [39] CHEN CH T, LÜ J H, WANG G L, et al. Deep ultraviolet harmonic generation with KBe2BO3F2 crystal[J]. Chinese Physics Letters, 2001, 18(8): 1081. doi: 10.1088/0256-307X/18/8/327
    [40] CHEN CH T, WANG G L, WANG X Y, et al. Improved sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal[J]. IEEE Journal of Quantum Electronics, 2008, 44(7): 617-621. doi: 10.1109/JQE.2008.920324
    [41] NAKAZATO T, ITO I, KOBAYASHI Y, et al. Phase-matched frequency conversion below 150 nm in KBe2BO3F2[J]. Optics Express, 2016, 24(15): 17149-17158. doi: 10.1364/OE.24.017149
    [42] LI R K, WANG L R, WANG X Y, et al. Dispersion relations of refractive indices suitable for KBe2BO3F2 crystal deep-ultraviolet applications[J]. Applied Optics, 2016, 55(36): 10423-10426. doi: 10.1364/AO.55.010423
    [43] DAI SH B, CHEN M, ZHANG SH J, et al. 2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd: YAG laser in KBBF[J]. Laser Physics Letters, 2016, 13(3): 035401. doi: 10.1088/1612-2011/13/3/035401
    [44] CHEN CH T, WATANABE S, XU Z Y, et al.. Recent advances of deep and vacuum-UV harmonic generation with new borate crystals[C]. Proceedings of Conference on Lasers and Electro-Optics, IEEE, Maryland, USA. 2003: 814-816.
    [45] ZHANG X, WANG ZH M, WANG G L, et al. Widely tunable and high-average-power fourth-harmonic generation of a Ti: sapphire laser with a KBe2BO3F2 prism-coupled device[J]. Optics Letters, 2009, 34(9): 1342-1344. doi: 10.1364/OL.34.001342
    [46] XU B, LIU L J, WANG X Y, et al. Generation of high power 200 mW laser radiation at 177.3 nm in KBe2BO3F2 crystal[J]. Applied Physics B, 2015, 121(4): 489-494. doi: 10.1007/s00340-015-6260-4
    [47] KANAI T, WANG X Y, ADACHI S, et al. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device[J]. Optics Express, 2009, 17(10): 8696-8703. doi: 10.1364/OE.17.008696
    [48] SCHOLZ M, OPALEVS D, LEISCHING P, et al. A bright continuous-wave laser source at 193 nm[J]. Applied Physics Letters, 2013, 103(5): 051114. doi: 10.1063/1.4817786
    [49] 中国科学院理化技术研究所, 物理研究所. 一种非线性光学晶体激光变频耦合器: 中国, CN1172411C[P]. 2004-10-20.

    Technical Institute of Physics and Chemistry CAS, Institute of Physics CAS. Prism-nonlinear optical crystal coupler for laser frequency conversion: CN, ZL01115313.X[P]. 2004-10-20. (in Chinese)
    [50] XU Z Y, ZHANG SH J, ZHOU X J, et al. Advances in deep ultraviolet laser based high-resolution photoemission spectroscopy[J]. Frontiers of Information Technology &Electronic Engineering, 2019, 20(7): 885-913.
    [51] KISS T, KANETAKA F, YOKOYA T, et al. Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor[J]. Physical Review Letters, 2005, 94(5): 057001. doi: 10.1103/PhysRevLett.94.057001
    [52] MENG J Q, LIU G D, ZHANG W T, et al. Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor[J]. Nature, 2009, 462(7271): 335-338. doi: 10.1038/nature08521
    [53] BOK J M, BAE J J, CHOI H Y, et al. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates[J]. Science Advances, 2016, 2(3): e1501329. doi: 10.1126/sciadv.1501329
    [54] FENG Y, LIU D F, FENG B J, et al. Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14656-14661. doi: 10.1073/pnas.1613434114
    [55] ZHANG Y, WANG CH L, YU L, et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5[J]. Nature Communications, 2017, 8: 15512. doi: 10.1038/ncomms15512
    [56] LIU D F, LI C, HUANG J W, et al. Orbital origin of extremely anisotropic superconducting gap in nematic phase of FeSe superconductor[J]. Physical Review X, 2018, 8(3): 031033. doi: 10.1103/PhysRevX.8.031033
    [57] CYRANOSKI D. Materials science: China’s crystal cache[J]. Nature, 2009, 457(7232): 953-955. doi: 10.1038/457953a
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  2091
  • HTML全文浏览量:  867
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-03-30
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回