留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可调谐超构透镜的发展现状

林雨 蒋春萍

林雨, 蒋春萍. 可调谐超构透镜的发展现状[J]. 中国光学, 2020, 13(1): 43-61. doi: 10.3788/CO.20201301.0043
引用本文: 林雨, 蒋春萍. 可调谐超构透镜的发展现状[J]. 中国光学, 2020, 13(1): 43-61. doi: 10.3788/CO.20201301.0043
LIN Yu, JIANG Chun-ping. Recent progress in tunable metalenses[J]. Chinese Optics, 2020, 13(1): 43-61. doi: 10.3788/CO.20201301.0043
Citation: LIN Yu, JIANG Chun-ping. Recent progress in tunable metalenses[J]. Chinese Optics, 2020, 13(1): 43-61. doi: 10.3788/CO.20201301.0043

可调谐超构透镜的发展现状

doi: 10.3788/CO.20201301.0043
基金项目: 

国家自然科学基金 No.61674163

详细信息
    作者简介:

    林雨(1991-), 男, 山东济南人, 2017年于苏州大学获得硕士学位, 现为中国科学技术大学纳米技术与纳米仿生学院博士研究生, 主要从事微纳光电子学方面的研究。E-mail:ylin2017@sinano.ac.cn

    蒋春萍(1973—),女,江苏常州人,博士,中科院“百人计划”研究员,博士生导师。2002年于中国科学院上海技术物理研究所获得理学博士学位。之后进入中科院半导体研究所,从事半导体自旋电子学方面的研究。2004年进入德国马普固体所,从事基于低维等离子体调控的新型室温太赫兹波发射源及探测器的研究。2008年加入中国科学院苏州纳米技术与纳米仿生研究所,从事过渡金属氧化物和氮化物特种材料的PLD生长及超表面技术的研究。 E-mail:cpjiang2008@sinano.ac.cn

  • 中图分类号: TN29

Recent progress in tunable metalenses

Funds: 

Supported by National Natural Science Foundation of China No.61674163

More Information
  • 摘要: 随着新兴光学设备对微型化、一体化、智能化光学变焦系统的需求与日俱增,大大促进了纳米光电子学的迅猛发展。超构透镜是由具有特殊电磁属性的人造元素按照一定的排列方式组成的具有透镜功能的二维平面结构,其最大优点就是:轻薄和易于集成。然而,集成在超构透镜上的微纳结构一旦制备完成,便难以再改变其形貌或者尺寸,因而无法对其聚焦性能进行实时调控,限制了其功能及应用范围的进一步扩展。近年来,科学家们探索了实现超构透镜聚焦性能实时调控的多种途径,其中最引人注目的是将智能材料与超构透镜相结合。本文首先回顾了可调谐超构透镜的最新进展,分别详细阐述和分析了它们的调节原理和器件性能。最后,归纳分析了当前阻碍可调谐超构透镜发展的主要问题,并进一步对未来可调谐超构透镜的发展趋势做出了展望。
  • 图  1  (a) 可调谐超透镜实现电磁波的动态聚焦和多点聚焦切换示意图; (b)极化电磁波相位和幅度随电容变化曲线[23]

    Figure  1.  (a)Schematic diagram of dynamic focusing and multi-point focus switching of electromagnetic waves by reconfigurable metalens; (b)capacitance-dependent phase and amplitude responses of polarized electromagnetic waves, respectively[23]

    图  2  (a) 太赫兹可调谐超构透镜示意图; (b)太赫兹频率中石墨烯介电常数的实部随费米能级EF的变化曲线。矩形孔长度和旋转角度分别为L=160 μm和φ=0;(c)右旋圆偏振波通过具有不同费米能级EF的矩形孔单元时,透射波相位随矩形孔长度L变化曲线; (d)当费米能级EF从0.1 eV增加到0.3 eV时,经过所设计的超构透镜的透射右旋圆偏振太赫兹波的电场强度分布[24]

    Figure  2.  (a)Schematic of the THz reconfigurable metalens; (b) real part of the graphene permittivity in THz frequency as a function of EF. The aperture length and rotation angle are L=160 μm, φ=0; (c)phase of RCP scattering THz wave through one rectangular aperture versus different aperture lengths L for different EF; (d)electric field intensity distributions of the transmitted RCP THz wave at different EF[24]

    图  3  (a) 基于石墨烯的可调谐超构透镜结构示意图; (b)调控原理示意图[24]

    Figure  3.  (a)Schematic diagram of graphene based reconfigurable metalens; (b) schematic diagram of regulation principle[24]

    图  4  基于介电弹性体的可调谐超构透镜的(a)实物图; (b)原理图;(c)对中心电极V5加电时,焦距的调谐能力;(d)两个不同的电压下扫描聚焦强度分布图[27]

    Figure  4.  (a)Physical photo and (b) principle of dielectric elastomer actuator based tunable metalens; (c)tuning ability of focal length when power is applied to the center electrode V5; (d) Z-scan of the focus intensity profile was scanned at two different voltages[27].

    图  5  (a) 多栅极偏置技术示意图;(b)在工作频率fm=218.5 THz下,施加不同偏压时的反射相位变化曲线;(c)使焦点偏离y轴±3λ时所需的偏压分布;(d)离轴聚焦时归一化电场强度分布图[28]

    Figure  5.  (a)The schematic overview of multigate biasing technique; (b)the reflection phase varies with different applied biases at the operating frequency of fm = 218.5 THz; (c) the required biasing distributions when focal point deviating away from y-axis with amount of ±3λ; (d) the square normalized amplitude of the electric fields for off-axis focusing[28]

    图  6  在相变薄膜中写入可重构光子器件(艺术效果)[33]

    Figure  6.  Reconfigurable photonic devices written in a phase-change film (artistic impression)[33]

    图  7  (a) 菲涅耳波带片图像;(b)二元超振荡透镜图案;由菲涅尔波带聚焦的(c)和由二元超振荡透镜聚焦的(d)光学热点的显微镜图像[33]

    Figure  7.  (a) Fresnel zone-plate pattern. (b) Binary super-oscillatory lens pattern. Microscope image of optical hotspot focused by (c) the fresnel zone-plate and (d) the binary super-oscillatory lens[33]

    图  8  (a) 硅纳米天线单元结构示意图;(b)构成超构透镜的天线排布方式;(c)液晶-超表面混合结构侧视图;(d)常温及(e)35°下,超构透镜聚焦焦点区域的强度分布[34]

    Figure  8.  (a) Schematic of silicon nanoantennas unit cell; (b) antennas arrangement of flat cylindrical lens; (c) side view of liquid crystal-metasurface hybrid structure. The intensity distributions in the focal region for the metalens at room temperature (d) and 35° (e)[34]

    图  9  (a) 反射型超构透镜聚焦特性示意图;(b)集成化可调谐超构透镜实物图;(c) 3种实验配置的示意图(上),反射光束焦线处的光学轮廓(下)[37]

    Figure  9.  (a) Schematic of focusing characteristics of reflective metalens; (b) photograph of the integrated tunable metalens; (c) schematic of the three experimental configurations(top), experimentally measured optical profiles at focal lines for the three configurations (down)[37]

    图  10  (a) 可调焦超构透镜结构示意图;(b)最终设备的显微镜图像;(c)实验测量得到的前焦距d和两个超构透镜之间距离f随施加的直流电压变化曲线[38]

    Figure  10.  (a) Schematic illustration of the proposed tunable metalens; (b) microscope image captured by device; (c) measured front focal length d and the separation values between the moving and stationary lenses vary with the applied DC voltage[38]

    图  11  (a) 可调谐超构透镜系统示意图;(b)经过完整蚀刻工艺和切割后的超表面立方相位板;(c)可调谐超构透镜在红外和(d)可见光波段的焦距随超表面相位板的横向位移的变化曲线[39]

    Figure  11.  (a) Schematic representation of tunable metalens system; (b) a fully etched and cleaved metasurface cubic phase plate; focal length as a function of lateral displacement for the infrared (c) and visible (d) for tunable metalens[39]

    图  12  (a) 可拉伸PDMS上的超构透镜示意图;(b)当PDMS拉伸率s分别为100%,115%和130%时,变焦超构镜头的透射侧产生的纵向光束轮廓[40]

    Figure  12.  (a) Schematic illustration of a metalens on stretched PDMS; (b) measured longitudinal beam profiles generated on the transmission side of the zoom metalens with stretch rate of PDMS(s) of 100%, 115%, and 130%[40]

    图  13  (a) 可调弹性超构透镜的示意图;(b)测量和分析预测的对于不同应变值的焦距;(c)实验测量得到的轴向平面(左)和焦平面(右)中的径向应变超构透镜(ε= 0%至50%)的光强度分布[41]

    Figure  13.  (a) Schematic diagram of tunable elastic metasurface lenses; (b) measured and analytically predicted focal distances at different strain values; (c) measured optical intensity profiles of a radially strained metasurface microlens (ε=0% to 50%) in the axial plane (left) and the focal plane (right)[41]

    图  14  (a) 利用3D打印技术制备的高抗冲聚苯乙烯(HIPS)超构透镜照片。(b)不同频率电磁波入射时,实验(球体)和理论(实线)的聚焦焦距随拉伸因子的变化曲线。虚线表示近轴近似中的理论距离。沿着器件轴向平面的模拟(左)和实验(右)光功率分布图,对应拉伸因子s=0.8(c)和(d),1.0(e)和(f),以及1.4(g)和(h)[42]

    Figure  14.  (a) Photograph of the 3D-printed HIPS lens. (b) Experimental (spheres) and theoretical (solid lines) focal distances as a function of the stretching factor. The dashed line represents the theoretical distance in the paraxial approximation. Simulated (left) and experimental (right) optical power profiles along the axial plane of the device with stretching factors s of 0.8 (c) and (d), 1.0 (e) and (f), and 1.4 (g) and (h)[42]

    图  15  (a) 可调谐平面超构透镜结构示意图;(b), (c), (d)调控过程示意图;(e)-(g)当设计焦距分别为5λ,10λ和15λ时,不同相位梯度分布的实验结果[43]

    Figure  15.  (a) Schematic of tunable flat metalens. (b), (c), (d) Schematic diagram of the regulation process; (e)-(g) experimental results of different phase gradient distributions when the designed focal length is 5λ, 10λ, and 15λ, respectively[43]

  • [1] OKU H, HASHIMOTO K, ISHIKAWA M. Variable-focus lens with 1-kHz bandwidth[J]. Optics Express, 2004, 12(10): 2138-2149. doi:  10.1364/OPEX.12.002138
    [2] REN H W, WU S T. Variable-focus liquid lens[J]. Optics Express, 2007, 15(10): 5931-5936. doi:  10.1364/OE.15.005931
    [3] 贾洁姝.电控全息可变焦透镜的性能研究[D].哈尔滨: 哈尔滨工业大学, 2013: 1-7.

    JIA J SH. Performance study of tunable-focus electroholography lens[D]. Harbin: Harbin Institute of Technology, 2013: 1-7. (in Chinese)
    [4] 张检发, 袁晓东, 秦石乔.可调太赫兹与光学超材料[J].中国光学, 2014, 7(3): 349-364. http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml

    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml
    [5] ZHELUDEV N I. The road ahead for metamaterials[J]. Science, 2010, 328(5978): 582-583. doi:  10.1126/science.1186756
    [6] FEDOTOV V A, MLADYONOV P L, PROSVIRNIN S L, et al.Asymmetric propagation of electromagnetic waves through a planar chiral structure[J]. Physical Review Letters, 2006, 97(16): 167401. doi:  10.1103/PhysRevLett.97.167401
    [7] LANDY N I, SAJUYIGBE S, MOCK J J, et al.Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi:  10.1103/PhysRevLett.100.207402
    [8] ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924. doi:  10.1038/nmat3431
    [9] KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi:  10.1126/science.1232009
    [10] YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=551bc932ce7f12295ea2c36e57d9610e
    [11] GENEVET P, CAPASSO F, AIETA F, et al.Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139-152. http://cn.bing.com/academic/profile?id=342e96585f9acadfeb719602a4ee2d3e&encoded=0&v=paper_preview&mkt=zh-cn
    [12] DING F, PORS A, BOZHEVOLNYI S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 2018, 81(2): 026401. doi:  10.1088/1361-6633/aa8732
    [13] YU N F, AIETA F, GENEVET P, et al.A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi:  10.1021/nl303445u
    [14] SIDDIQUE R H, MERTENS J, HÖLSCHER H, et al.Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201703013
    [15] PORS A, NIELSEN M G, ERIKSEN R L, et al.Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829-834. doi:  10.1021/nl304761m
    [16] ZHENG G X, MVHLENBERND H, KENNEY M, et al.Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. https://www.ncbi.nlm.nih.gov/pubmed/25705870
    [17] REN M X, WU W, CAI W, et al.Reconfigurable metasurfaces that enable light polarization control by light[J]. Light: Science & Applications, 2017, 6(6): e16254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201702019
    [18] ROGERS E T F, LINDBERG J, ROY T, et al.A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435. doi:  10.1038/nmat3280
    [19] WINTZ D, GENEVET P, AMBROSIO A, et al.Holographic metalens for switchable focusing of surface plasmons[J]. Nano Letters, 2015, 15(5): 3585-3589. doi:  10.1021/acs.nanolett.5b01076
    [20] KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J]. Science, 2017, 358(6367): eaam8100. doi:  10.1126/science.aam8100
    [21] WANG SH M, WU P C, SU V C, et al.Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi:  10.1038/s41467-017-00166-7
    [22] WANG SH M, WU P C, SU V C, et al.A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. http://cn.bing.com/academic/profile?id=05a99d3d4fdf9a529f1dcbde67ecfda3&encoded=0&v=paper_preview&mkt=zh-cn
    [23] CHEN K, FENG Y J, MONTICONE F, et al.A reconfigurable active Huygens' Metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi:  10.1002/adma.201606422
    [24] HUANG Z D, HU B, LIU W G, et al.Dynamical tuning of terahertz meta-lens assisted by graphene[J]. Journal of the Optical Society of America B, 2017, 34(9): 1848-1854. doi:  10.1364/JOSAB.34.001848
    [25] 陈勰宇, 田震.石墨烯太赫兹波动态调制的研究进展[J].中国光学, 2017, 10(1): 86-97. http://www.chineseoptics.net.cn/CN/abstract/abstract9505.shtml

    CHEN X Y, TIAN ZH. Recent progress in terahertz dynamic modulation based on graphene[J]. Chinese Optics, 2017, 10(1): 86-97. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9505.shtml
    [26] KIM T T, KIM H, KENNEY M, et al.Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces[J]. Advanced Optical Materials, 2018, 6(1): 1700507. doi:  10.1002/adom.201700507
    [27] SHE A L, ZHANG SH Y, SHIAN S, et al.Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi:  10.1126/sciadv.aap9957
    [28] FOROUZMAND A, SALARY M M, INAMPUDI S, et al.A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface[J]. Advanced Optical Materials, 2018, 6(7): 1701275. doi:  10.1002/adom.201701275
    [29] KAO T S, CHEN Y G, HONG M H. Controlling the near-field excitation of nano-antennas with phase-change materials[J]. Beilstein Journal of Nanotechnology, 2013, 4: 632-637. doi:  10.3762/bjnano.4.70
    [30] CHEN Y G, KAO T S, NG B, et al.Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Optics Express, 2013, 21(11): 13691-13698. doi:  10.1364/OE.21.013691
    [31] MICHEL A K U, CHIGRIN D N, MA T W W, et al.Using low-loss phase-change materials for mid-infrared antenna resonance tuning[J]. Nano Letters, 2013, 13(8): 3470-3475. doi:  10.1021/nl4006194
    [32] CHEN Y G, LI X, SONNEFRAUD Y, et al.Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5: 8660. doi:  10.1038/srep08660
    [33] WANG Q, ROGERS E T F, GHOLIPOUR B, et al.Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi:  10.1038/nphoton.2015.247
    [34] ZHONG J W, AN N, YI N B, et al.Broadband and tunable-focus flat lens with dielectric metasurface[J]. Plasmonics, 2016, 11(2): 537-541. doi:  10.1007/s11468-015-0087-z
    [35] 秦雷, 谢晓瑛, 李君龙. MEMS技术发展现状及未来发展趋势[J].现代防御技术, 2017, 45(4): 1-5, 23. doi:  10.3969/j.issn.1009-086x.2017.04.001

    QIN L, XIE X Y, LI J L. Development status and future development trend of MEMS technology[J]. Modern Defense Technology, 2017, 45(4): 1-5, 23. (in Chinese) doi:  10.3969/j.issn.1009-086x.2017.04.001
    [36] LIN L Y, HERZIG H P. Introduction to the feature section on optical MEMS and nanophotonics[J]. IEEE Journal of Quantum Electronics, 2010, 46(9): 1235-1236. doi:  10.1109/JQE.2010.2052950
    [37] ROY T, ZHANG SH Y, JUNG I W, et al.Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi:  10.1063/1.5018865
    [38] ARBABI E, ARBABI A, KAMALI S M, et al.MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi:  10.1038/s41467-018-03155-6
    [39] COLBURN S, ZHAN A L, MAJUMDAR A. Varifocal zoom imaging with large area focal length adjustable metalenses[J]. Optica, 2018, 5(7): 825-831. doi:  10.1364/OPTICA.5.000825
    [40] EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi:  10.1021/acs.nanolett.6b00618
    [41] MAHSA KAMALI S, ARBABI E, ARBABI A, et al.Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews, 2016, 10(6): 1002-1008. http://cn.bing.com/academic/profile?id=be14a2a8e0fb9e0ac9fe6fd0be8c1010&encoded=0&v=paper_preview&mkt=zh-cn
    [42] CALLEWAERT F, VELEV V, JIANG SH ZH, et al.Inverse-designed stretchable metalens with tunable focal distance[J]. Applied Physics Letters, 2018, 112(9): 091102. doi:  10.1063/1.5017719
    [43] ZHU W M, SONG Q H, YAN L B, et al.A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Advanced Materials, 2015, 27(32): 4739-4743. doi:  10.1002/adma.201501943
    [44] ZHANG J F, MACDONALD K F, ZHELUDEV N I. Nonlinear dielectric optomechanical metamaterials[J]. Light: Science & Applications, 2013, 2(8): e96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c13a3cfae31c277383c83efaedb7feb
    [45] OU J Y, PLUM E, ZHANG J F, et al.Giant nonlinearity of an optically reconfigurable plasmonic metamaterial[J]. Advanced Materials, 2016, 28(4): 729-733. doi:  10.1002/adma.201504467
    [46] AURO M P, SERGEI K T, KESTUTIS S. Gain through losses in nonlinear optics[J]. Light: science & Applications, 2018, 7, e43. http://cn.bing.com/academic/profile?id=bc48b9e7d207bcc1b1181964de9f0794&encoded=0&v=paper_preview&mkt=zh-cn
    [47] ZHU Y, HU X Y, FU Y L, et al.Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range[J]. Scientific Reports, 2013, 3: 2338. doi:  10.1038/srep02338
    [48] DANI K M, KU Z, UPADHYA P C, et al.Subpicosecond optical switching with a negative index metamaterial[J]. Nano Letters, 2009, 9(10): 3565-3569. doi:  10.1021/nl9017644
    [49] CHEN J, WANG K, LONG H, et al.Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region[J]. Nano Letters, 2018, 18(2): 1344-1350. doi:  10.1021/acs.nanolett.7b05033
    [50] SCHLICKRIEDE C, WATERMAN N, REINEKE B, et al.Imaging through nonlinear metalens using second harmonic generation[J]. Advanced Materials, 2018, 30(8): 1703843. doi:  10.1002/adma.201703843
  • [1] 吕潇磊, 赵继广, 杜小平, 宋一铄, 张朋, 张建伟.  新型电光材料调制性能研究进展 . 中国光学, 2021, 14(1): 1-14. doi: 10.37188/CO.2020-0039
    [2] 袁志国, 马修真, 刘晓楠, 穆彦龙, 杨晓涛.  利用可调谐激光吸收光谱技术的柴油机排放温度测试研究 . 中国光学, 2020, 13(2): 281-289. doi: 10.3788/CO.20201302.0281
    [3] 王巍, 李野, 陈卫军, 宋德, 王新.  EBCMOS近贴聚焦结构及电场分布对电子运动轨迹的影响 . 中国光学, 2020, 13(4): 713-721. doi: 10.37188/CO.2020-0063
    [4] 胡轶, 胡更新, 张洁静, 桑丹丹, 李易昆, 高世勇.  ZnO纳米棒/CdS量子点的制备及紫外-可见探测性能研究 . 中国光学, 2019, 12(6): 1271-1278. doi: 10.3788/CO.20191206.1271
    [5] 刘志贺, 吴长锋.  超分辨率成像荧光探针材料应用进展 . 中国光学, 2018, 11(3): 344-362. doi: 10.3788/CO.20181103.0344
    [6] 董丽丹, 魏长平, 李中田, 汪凤明.  纳米壳聚糖复合材料的制备与性能研究 . 中国光学, 2018, 11(5): 773-778. doi: 10.3788/CO.20181105.0773
    [7] 冀翼, 张学军, 袁婷, 陶小平.  用于智能移动设备的条纹反射法检测系统 . 中国光学, 2017, 10(2): 267-279. doi: 10.3788/CO.20171002.0267
    [8] 张磊, 刘硕, 崔铁军.  电磁编码超材料的理论与应用 . 中国光学, 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001
    [9] 张旭霞, 李斌, 张黎明, 高颉, 李秋艳, 孟庆华.  有机-无机复合纳米材料的传感应用及机理 . 中国光学, 2015, 8(4): 651-666. doi: 10.3788/CO.20150804.0651
    [10] 徐嘉林, 金维召, 刘旺, 彭海益, 刘贺, 李春, 林海, 刘景和, 曾繁明.  Ho,Yb: Tb3Ga5O12纳米粉体制备及发光性能研究 . 中国光学, 2015, 8(4): 608-614. doi: 10.3788/CO.20150804.0608
    [11] 贾书海, 唐振华, 董君, 陈花玲.  柔性变焦透镜发展现状 . 中国光学, 2015, 8(4): 535-547. doi: 10.3788/CO.20150804.0535
    [12] 赵健, 楚学影, 李金华, 方铉, 王晓华.  SiO2包覆对ZnS纳米材料发光的增强机制 . 中国光学, 2014, 7(6): 925-930. doi: 10.3788/CO.20140706.0925
    [13] 张检发, 袁晓东, 秦石乔.  可调太赫兹与光学超材料 . 中国光学, 2014, 7(3): 349-364. doi: 10.3788/CO.20140703.0349
    [14] 王建立, 刘欣悦.  智能光学的概念及发展 . 中国光学, 2013, 6(4): 437-448. doi: 10.3788/CO.20130604.0437
    [15] 赵慧洁, 宋汪洋, 张颖, 赵峰, 程宣.  声光可调谐滤波器成像光谱仪实时预处理系统 . 中国光学, 2013, 6(4): 577-583. doi: 10.3788/CO.20130604.0577
    [16] 潘学聪, 姚泽瀚, 徐新龙, 汪力.  太赫兹波段超材料的制作、设计及应用 . 中国光学, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
    [17] 宋建中.  图像处理智能化的发展趋势 . 中国光学, 2011, 4(5): 431-440.
    [18] 李健雄, 余华, 李珣, 赵丽娟.  电子俘获材料的研究现状及在红外检测方面的应用 . 中国光学, 2011, 4(2): 93-102.
    [19] 刘炳强, 李景林, 王书新, 高明辉, 孙斌, 伞兵.  高体分SiCp/Al复合材料螺纹性能的测试 . 中国光学, 2011, 4(6): 576-582.
    [20] J. O. Shenk, M. A. Fiddy, W. Yang.  基于特异材料的非完美透镜成像 . 中国光学, 2010, 3(1): 45-51.
  • 加载中
图(15)
计量
  • 文章访问数:  882
  • HTML全文浏览量:  522
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-07
  • 修回日期:  2019-01-02
  • 刊出日期:  2020-02-01

可调谐超构透镜的发展现状

doi: 10.3788/CO.20201301.0043
    基金项目:

    国家自然科学基金 No.61674163

    作者简介:

    林雨(1991-), 男, 山东济南人, 2017年于苏州大学获得硕士学位, 现为中国科学技术大学纳米技术与纳米仿生学院博士研究生, 主要从事微纳光电子学方面的研究。E-mail:ylin2017@sinano.ac.cn

    蒋春萍(1973—),