留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速再入试验的辐射光谱定量测量

余晓娅 刘立拓 李瑞 王同权

余晓娅, 刘立拓, 李瑞, 王同权. 高超声速再入试验的辐射光谱定量测量[J]. 中国光学, 2020, 13(1): 87-94. doi: 10.3788/CO.20201301.0087
引用本文: 余晓娅, 刘立拓, 李瑞, 王同权. 高超声速再入试验的辐射光谱定量测量[J]. 中国光学, 2020, 13(1): 87-94. doi: 10.3788/CO.20201301.0087
YU Xiao-ya, LIU Li-tuo, LI Rui, WANG Tong-quan. Measurements of absolute radiative emissions for supersonic reentry[J]. Chinese Optics, 2020, 13(1): 87-94. doi: 10.3788/CO.20201301.0087
Citation: YU Xiao-ya, LIU Li-tuo, LI Rui, WANG Tong-quan. Measurements of absolute radiative emissions for supersonic reentry[J]. Chinese Optics, 2020, 13(1): 87-94. doi: 10.3788/CO.20201301.0087

高超声速再入试验的辐射光谱定量测量

doi: 10.3788/CO.20201301.0087
基金项目: 

国家自然科学基金青年项目 61404171

详细信息
    作者简介:

    余晓娅(1985-), 女, 河南柘城人, 博士, 助理研究员, 主要从事目标光学特性测量方面的研究。Email:may19850225@sina.com

    刘立拓(1982-), 男, 河北保定人, 博士, 主要从事光学检测方面的研究工作。Email:liulituo@ime.ac.cn

  • †共同贡献作者
  • 中图分类号: V211.74

Measurements of absolute radiative emissions for supersonic reentry

Funds: 

National Natural Science Foundation of China Youth Project 61404171

More Information
    Corresponding author: LIU Li-tuo, Email:liulituo@ime.ac.cn
  • †These authors contribute equally
  • 摘要: 利用膨胀管对宽度为45 mm和90 mm的半圆柱模型进行了地球再入高超声速流动试验,再入速度为8 km/s。试验利用配有ICCD相机的光谱仪,测量了具有空间分辨的激波后辐射光谱,光谱范围为250~550 nm,得到了沿流体方向的激波辐射轮廓线。分析发现在该光谱范围内辐射主要为CN(B-X)带系分子光谱。利用卤钨灯对该波段光谱进行定标,得到了激波层辐射的绝对辐射亮度。通过采用两种模型辐射亮度对模型宽度归一化后发现,绕流场高温气体辐射存在较强的自吸收现象,同时观测到了绕流场激波的三维效应。通过实验发现,CN(B-X)Δv=0带系的3-3振动带系385.2 nm波长位置和0-0带系388.4 nm波长位置辐亮度之比随着流场靠近模型边缘而逐渐下降,这表明激波层内辐射的动态非平衡特征。
    †These authors contribute equally
    1)  †共同贡献作者
  • 图  1  JF-16原理示意图

    Figure  1.  Principle diagram for JF-16

    图  2  JF-16实验测量系统示意图

    Figure  2.  Schematic diagram of measurement system in JF-16

    图  3  测量模型

    Figure  3.  Test model

    图  4  光谱响应标定结果

    Figure  4.  Calibrated spectral response

    图  5  实验光谱数据

    Figure  5.  Spectral data of two models

    图  6  距离模型边缘2 mm处光谱辐亮度

    Figure  6.  Spectral radiance at the vertical distance of 2 mm from the edge in model 1 and model 2

    图  7  模型1和模型2在距离模型边缘2 mm处光谱辐亮度比值

    Figure  7.  Spectral radiance ratio between model 1 and model 2 at the vertical distance of 2 mm from the edge

    图  8  模型1在388.4 nm和385.2 nm处激波沿流场方向分布

    Figure  8.  The shock layer radiance distributions along flow field at the wavelength of 388.4 nm and 385.2 nm for model 1

    图  9  385.2 nm和388.4 nm处光谱辐亮度比值沿模型边缘变化情况

    Figure  9.  Spectral radiance ratio between 385.2 nm and 388.4 nm varies along distance from model edge

    表  1  初始参数和测量条件

    Table  1.   Initial parameters and test conditions

    Parameters Values Gas
    Driver gas pressure/MPa 1.0 H2, O2
    Test gas/Pa 3000 Air
    Acceleration gas/Pa 20 Air
    Velocity/km·s-1 8 -
    Total enthalpy/MJ·kg-1 36 -
    下载: 导出CSV
  • [1] LIEBHART H, HERDRICH G, FASOULAS S. Advances for radiation modeling for earth re-entry in PARADE: application to the STARDUST atmospheric entry, AIAA-2012-3196[R]. New orleans, Louisiana: AIAA, 2012.
    [2] GRINSTEAD J H, JENNISKENS P, CASSELL A M, et al.. Airborne observation of the hayabusa sample return capsule reentry, AIAA-2011-3329[R]. Honolulu, Hawaii: AIAA, 2011.
    [3] HERMANN T, LÖHLE S, ZANDER F, et al... Characterization of a reentry plasma wind-tunnel flow with vacuum-ultraviolet to near-infrared spectroscopy[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(3):673-688. doi: 10.2514/1.T4695
    [4] PORAT H, MORGAN R G, MCINTYRE T J. Study of radiative heat transfer in Titan atmospheric entry[C]. Proceedings of 28th International Congress of the Aeronautical Sciences, Launceston, 2012.
    [5] JOHNSTON C O, GNOFFO P A, MAZAHERI A. Influence of coupled radiation and ablation on the aerothermodynamic environment of planetary entry vehicles[J]. RTO Lecture Series, Von Karman Inst. for Fluid Dynamics, Rhode-St-Genèse, Belgium, 2013, 218:1-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gT/9jUxQkZ4dHqaZcqmM81P8hfii4jsZ36qGwGItmT0=
    [6] BRANDIS A M, JOHNSTON C O. Characterization of stagnation-point heat flux for earth entry AIAA-2014-2374[R]. Atlanta: AIAA, 2014.
    [7] GUPTA R N. Aerothermodynamic analysis of stardust sample return capsule with coupled radiation and ablation[J]. Journal of Spacecraft and Rockets, 2000, 37(4):507-514. doi: 10.2514/2.3592
    [8] GNOFFO P A, JOHNSTON C O, KLEB B B. Challenges to computational aerothermodynamic simulation and validation for planetary entry vehicle analysis, NASA RTO-EN-AVT-186[R]. Washington: NASA, 2010.
    [9] JACOBS P, MORGAN R, BRANDIS A, et al.. Design, operation and testing in expansion tube facilities for super-orbital re-entry[C]. STO-AVT-VKI Lecture Series Radiation and Gas-Surface Interaction Phenomena in High Speed Re-Entry (2013-AVT-218). 2013: 5-1-5-65. https://espace.library.uq.edu.au/view/UQ:326742
    [10] JACOBS C M, MCLNTYRE T J, MORGAN R G, et al.. Radiative heat transfer measurements in low-density titan atmospheres[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(4):835-844. doi: 10.2514/1.T4519
    [11] HOLLIS B R, STRIEPE S A, WRIGHT M J, et al.. Prediction of the aerothermodynamic environment of the huygens probe. AIAA-2005-4816[R]. Toronto: AIAA, 2005.
    [12] PARK C. Nonequilibrium Air Radiation (NEQAIR) Program: User's Manual, NASA-TM-86707[R]. Washington: NASA, 1985.
    [13] THOMAS G M, MENARD W A. Experimental measurements of nonequilibrium and equilibrium radiation from planetary atmospheres[J]. AIAA Journal, 1966, 4(2):227-237. doi: 10.2514/3.3423
    [14] GÖKÇEN T. N2-CH4-Ar chemical kinetic model for simulations of atmospheric entry to Titan, AIAA-2004-2469[R]. Portland: AIAA, 2004.
    [15] BOSE D, WRIGHT M J, BOGDANOFF D W, et al.. Modeling and experimental assessment of CN radiation behind a strong shock wave[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(2):220-230. doi: 10.2514/1.16869
    [16] LABRACHERIE L, BILLIOTTE M, HOUAS L. Shock-tube analysis of argon influence in Titan radiative environment[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(1):162-168. doi: 10.2514/3.767
    [17] LEWIS S W, MORGAN R G, MCINTYRE T J, et al.. Expansion tunnel experiments of earth reentry flow with surface ablation[J]. Journal of Spacecraft and Rockets, 2016, 53(5):887-899. doi: 10.2514/1.A33267
    [18] SHEIKH U A, MORGAN R G, MCINTYRE T J. Vacuum ultraviolet spectral measurements for superorbital earth entry in X2 expansion tube[J]. AIAA Journal, 2015, 53(12):3589-3602. doi: 10.2514/1.J054027
    [19] SHEIKH U A, JACOBS C, LAUX C O, et al.. Measurements of radiating flow fields in the vacuum ultraviolet[C]. Proceedings of the 29th International Symposium on Shock Waves, Springer, 2013: 653-658.
    [20] BRANDIS A M, MORGAN R G, MCINTYRE T J, et al.. Nonequilibrium radiation intensity measurements in simulated Titan atmospheres[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(2):291-300. doi: 10.2514/1.44482
    [21] 杨乾锁, 余西龙, 姜乃波, 等.激波波后氮分子发射光谱的测量[J].流体力学实验与测量, 2000, 14(3):57-60+65. doi: 10.3969/j.issn.1672-9897.2000.03.011

    YANG Q S, YU X L, JIANG N B, et al.. Spectral measurement of nitrogen emission behind normal shock wave[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):57-60+65. (in Chinese) doi: 10.3969/j.issn.1672-9897.2000.03.011
    [22] 杨虹, 张雅声, 丁文哲.飞艇红外探测系统探测高超声速目标性能研究[J].中国光学, 2016, 9(5):596-605. http://www.chineseoptics.net.cn/CN/abstract/abstract9447.shtml

    YANG H, ZHANG Y SH, DING W ZH. Detectability of airship infrared detection system to hypersonic vehicle[J]. Chinese Optics, 2016, 9(5):596-605. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9447.shtml
    [23] 孟凡胜, 熊仁生, 刘朝晖.高速再入体热辐射模型的分析与修正[J].光学 精密工程, 2006, 14(8):574-578. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200604009

    MENG F SH, XIONG R SH, LIU CH H. Analysis of hypersonic reentry radiation model[J]. Opt. Precision Eng., 2006, 14(8):574-578. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200604009
    [24] LIN X, YU X L, LI F, et al.. Measurements of non-equilibrium and equilibrium temperature behind a strong shock wave in simulated martian atmosphere[J]. Acta Mechanica Sinica, 2012, 28(5):1293-1302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb-e201205008
    [25] BRANDIS A M, GOLLAN R J, SCOTT M P, et al.. Expansion tube operating, conditions for studying nonequilibrium radiation relevant to Titan aerocapture, AIAA-2006-4517[R]. Sacramemto: AIAA, 2006.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  124
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 修回日期:  2019-11-08
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回