留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电介质球复合纳米天线对荧光定向发射的增强

米智 陈智辉 杨毅彪 费宏明 刘欣

米智, 陈智辉, 杨毅彪, 费宏明, 刘欣. 电介质球复合纳米天线对荧光定向发射的增强[J]. 中国光学(中英文), 2020, 13(1): 121-130. doi: 10.3788/CO.20201301.0121
引用本文: 米智, 陈智辉, 杨毅彪, 费宏明, 刘欣. 电介质球复合纳米天线对荧光定向发射的增强[J]. 中国光学(中英文), 2020, 13(1): 121-130. doi: 10.3788/CO.20201301.0121
MI Zhi, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna[J]. Chinese Optics, 2020, 13(1): 121-130. doi: 10.3788/CO.20201301.0121
Citation: MI Zhi, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna[J]. Chinese Optics, 2020, 13(1): 121-130. doi: 10.3788/CO.20201301.0121

电介质球复合纳米天线对荧光定向发射的增强

doi: 10.3788/CO.20201301.0121
基金项目: 

国家自然科学基金资助项目 11674239

国家自然科学基金资助项目 61575139

国家自然科学基金资助项目 61575138

山西省青年拔尖人才支持计划 

三晋英才支持计划 

详细信息
    作者简介:

    米智(1991-), 男, 山西大同人, 硕士研究生, 2015年于山东师范大学获得学士学位, 现就读于太原理工大学新型传感器与智能控制教育部/山西省重点实验室光学工程专业, 主要从事微纳光子学方面的研究。E-mail:1982987116@qq.com

    陈智辉(1984-), 男, 山西太原人, 博士, 教授, 博士生导师, 2006年于北京邮电大学获得学士学位, 2012年于瑞典皇家工学院获得博士学位, 现任职于太原理工大学新型传感器与智能控制教育部/山西省重点实验室, 主要从事微纳光子学方面的研究。E-mail:huixu@126.com

  • 中图分类号: O432.1

Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna

Funds: 

National Natural Science Foundation of China 11674239

National Natural Science Foundation of China 61575139

National Natural Science Foundation of China 61575138

Program for the Top Young Talents of Shanxi Province 

Program for the Sanjin Outstanding Talents of China 

More Information
  • 摘要: 在纳米光子学中,提高荧光物质的定向发光强度是许多应用要解决的关键问题。为了优化电介质纳米天线的荧光增强能力,本文提出了一种由硅纳米球二聚体与TiO2微球组成的电介质球复合纳米天线。通过时域有限差分法,本文分别从量子产率增强、荧光收集效率增强以及荧光激发率增强3个方面研究了该复合纳米天线对荧光的增强效果。结果表明,这种复合纳米天线不仅可以解决单个TiO2微球增强荧光时量子产率较低的问题,还可以弥补单个硅纳米球二聚体增强荧光时荧光收集效率较差的不足。该复合纳米天线可使CdSe量子点的量子产率增强约4倍、荧光收集效率增强约2倍。此外,由于硅纳米球二聚体与TiO2微球对荧光激发过程具有增强效果,该复合天线最终可以产生较高的荧光定向增强倍数。在量子点发光的中心波长523 nm处,荧光定向增强约为3 064倍。

     

  • 图 1  3种纳米天线的二维截面图

    Figure 1.  Two-dimensional cross sections of three nano-antennas

    图 2  量子点在有无纳米天线时的辐射功率示意图

    Figure 2.  Schematic diagram of the radiant powers of quantum dots with/without nano-antennas

    图 3  3中纳米天线对量子点量子产率的增强效应和发光电场分布

    Figure 3.  Quantum yield enhancements and luminous electric field distributions of three nano-antennas on quantum dots

    图 4  量子点在三种纳米天线作用下的收集效率增强和辐射分布

    Figure 4.  Collection efficiency enhancements and radiation distributions of quantum dots with three nano-antennas

    图 5  平面波入射后量子点所在位置周围的电场分布

    Figure 5.  Electric field distributions around the quantum dots with the irradiation by plane wave

    图 6  3种纳米天线对量子点总的荧光定向增强

    Figure 6.  Total fluorescence directional enhancements of quantum dots with three nano-antennas

  • [1] 邢笑雪, 王宪伟, 秦宏伍, 等. PbSe量子点近红外光源的CH4气体检测[J].中国光学, 2018, 11(4):662-668. http://www.chineseoptics.net.cn/CN/abstract/abstract9603.shtml

    XING X X, WANG X W, QIN H W, et al.. CH4 detection based on near-infrared luminescence of PbSe quantum dots[J]. Chinese Optics, 2018, 11(4):662-668. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9603.shtml
    [2] 姜相宇, 付华, 张敏, 等.二硫化钼量子点荧光传感器检测盐酸多西环素的研究[J].分析化学, 2018, 46(7):1077-1083. http://d.old.wanfangdata.com.cn/Periodical/fxhx201807011

    JIANG X Y, FU H, ZHANG M, et al.. Molybdenum disulfide quantum dots-based fluorescence sensor for detection of doxycycline Hyclate[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7):1077-1083. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201807011
    [3] PARFENOV A, GRYCZYNSKI I, MALICKA J, et al.. Enhanced fluorescence from fluorophores on fractal silver surfaces[J]. The Journal of Physical Chemistry B, 2003, 107(34):8829-8833. doi: 10.1021/jp022660r
    [4] 邹小波, 史永强, 郑悦, 等.基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J].分析化学, 2018, 46(6):960-968. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201806022

    ZOU X B, SHI Y Q, ZHENG Y, et al.. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6):960-968. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201806022
    [5] 任升, 刘丽炜, 李金华, 等.纳米尺度下的局域场增强研究进展[J].中国光学, 2018, 11(1):31-46. http://www.chineseoptics.net.cn/CN/abstract/abstract9558.shtml

    REN SH, LIU L W, LI J H, et al.. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1):31-46. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9558.shtml
    [6] ASLAN K, PREVITE M J R, ZHANG Y X, et al.. Metal-enhanced fluorescence from nanoparticulate zinc films[J]. The Journal of Physical Chemistry C, 2008, 112(47):18368-18375. doi: 10.1021/jp806790u
    [7] KOSAKO T, KADOYA Y, HOFMANN H F. Directional control of light by a nano-optical Yagi-Uda antenna[J]. Nature Photonics, 2010, 4:312-315. doi: 10.1038/nphoton.2010.34
    [8] ANDERSEN S K H, BOGDANOV S, MAKAROVA O, et al.. Hybrid plasmonic bullseye antennas for efficient photon collection[J]. ACS Photonics, 2018, 5(3):692-698. doi: 10.1021/acsphotonics.7b01194
    [9] RUTCKAIA V, HEYROTH F, NOVIKOV A, et al.. Quantum dot emission driven by Mie resonances in silicon nanostructures[J]. Nano Letters, 2017, 17(11):6886-6892. doi: 10.1021/acs.nanolett.7b03248
    [10] ALBELLA P, POYLI M A, SCHMIDT M K, et al.. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers[J]. The Journal of Physical Chemistry C, 2013, 117(26):13573-13584. doi: 10.1021/jp4027018
    [11] CAMBIASSO J, KÖNIG M, CORTÉS E, et al.. Surface-enhanced spectroscopies of a molecular monolayer in an all-dielectric nanoantenna[J]. ACS Photonics, 2018, 5(4):1546-1557. doi: 10.1021/acsphotonics.7b01604
    [12] BOUCHET D, MIVELLE M, PROUST J, et al.. Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas[J]. Physical Review Applied, 2016, 6(6):064016. doi: 10.1103/PhysRevApplied.6.064016
    [13] CALDAROLA M, ALBELLA P, CORTÉS E, et al.. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion[J]. Nature Communications, 2015, 6(1):7915. doi: 10.1038/ncomms8915
    [14] REGMI R, BERTHELOT J, WINKLER P M, et al.. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules[J]. Nano Letters, 2016, 16(8):5143-5151. doi: 10.1021/acs.nanolett.6b02076
    [15] GÉRARD D, DEVILEZ A, AOUANI H, et al.. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere[J]. Journal of the Optical Society of America B, 2009, 26(7):1473-1478. doi: 10.1364/JOSAB.26.001473
    [16] YAN Y ZH, ZENG Y, WU Y, et al.. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays[J]. Optics Express, 2014, 22(19):23552-23564. doi: 10.1364/OE.22.023552
    [17] SUN S, WU L, BAI P, et al.. Fluorescence enhancement in visible light:dielectric or noble metal?[J]. Physical Chemistry Chemical Physics, 2016, 18(28):19324-19335. doi: 10.1039/C6CP03303B
    [18] 姜杰, 李士浩, 严一楠, 等.氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究[J].发光学报, 2017, 38(12):1567-1574. http://d.old.wanfangdata.com.cn/Periodical/fgxb201712002

    JIANG J, LI SH H, YAN Y N, et al.. Preparation of N-doped fluorescent carbon dots with high quanturn yeild for In-vitro bioimaging[J]. Chinese Journal of Luminescense, 2017, 38(12):1567-1574. http://d.old.wanfangdata.com.cn/Periodical/fgxb201712002
    [19] PAPASIMAKIS N, FEDOTOV V A, SAVINOV V, et al.. Electromagnetic toroidal excitations in matter and free space[J]. Nature Materials, 2016, 15(3):263-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f988e27307430203d81a778edcef1f2b
    [20] LU G W, ZHANG T Y, LI W Q, et al.. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The Journal of Physical Chemistry C, 2011, 115(32):15822-15828. doi: 10.1021/jp203317d
    [21] 蔡小舒, 苏明旭, 沈建琪, 等.颗粒粒度测量技术及应用[M].北京:化学工业出版社, 2010.

    CAI X SH, SHU M X, SHEN J Q, et al.. Particle Size Measurement Technology and Application[M]. Beijing:Chemical Industry Press, 2010. (in Chinese)
    [22] 张文君, 翟保才, 许键. ZnO作为电子传输层的绿光胶体CdSe量子点LED(QD-LED)的制备与表征[J].发光学报, 2012, 33(11):1171-1176. http://d.old.wanfangdata.com.cn/Periodical/fgxb201211003

    ZHANG W J, ZHAI B C, XU J. Fabrication and characterization of green CdSe quantumn dot light emitting diodes with ZnO electron-transport layer[J]. Chinese Journal of Luminescence, 2012, 33(11):1171-1176. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201211003
    [23] CAMBIASSO J, GRINBLAT G, LI Y, et al.. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas[J]. Nano Letters, 2017, 17(2):1219-1225. doi: 10.1021/acs.nanolett.6b05026
    [24] DEVILEZ A, STOUT B, BONOD N. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission[J]. ACS Nano, 2010, 4(6):3390-3396. doi: 10.1021/nn100348d
    [25] JIAO X J, BLAIR S. Optical antenna design for fluorescence enhancement in the ultraviolet[J]. Optics Express, 2012, 20(28):29909-29922. doi: 10.1364/OE.20.029909
    [26] DAS G M, RINGNE A B, DANTHAM V R, et al.. Numerical investigations on photonic nanojet mediated surface enhanced raman scattering and fluorescence techniques[J]. Optics Express, 2017, 25(17):19822-19831. doi: 10.1364/OE.25.019822
    [27] PALIK E D. Handbook of Optical Constants of Solids[M]. San Diego:Academic Press, 1998.
    [28] BAKKER R M, PERMYAKOV D, YU Y F, et al.. Magnetic and electric hotspots with silicon nanodimers[J]. Nano Letters, 2015, 15(3):2137-2142. doi: 10.1021/acs.nanolett.5b00128
    [29] CHEN ZH G, TAFLOVE A, BACKMAN V. Photonic nanojet enhancement of backscattering of light by nanoparticles:a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7):1214-1220. doi: 10.1364/OPEX.12.001214
  • 加载中
图(6)
计量
  • 文章访问数:  1734
  • HTML全文浏览量:  621
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-04
  • 修回日期:  2019-05-14
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!