留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合谐振模式宽带长波红外超表面吸收器研究

罗奕 梁中翥 孟德佳 陶金 梁静秋 秦正 候恩柱 秦余欣 吕金光 张宇昊

罗奕, 梁中翥, 孟德佳, 陶金, 梁静秋, 秦正, 候恩柱, 秦余欣, 吕金光, 张宇昊. 混合谐振模式宽带长波红外超表面吸收器研究[J]. 中国光学(中英文), 2020, 13(1): 131-139. doi: 10.3788/CO.20201301.0131
引用本文: 罗奕, 梁中翥, 孟德佳, 陶金, 梁静秋, 秦正, 候恩柱, 秦余欣, 吕金光, 张宇昊. 混合谐振模式宽带长波红外超表面吸收器研究[J]. 中国光学(中英文), 2020, 13(1): 131-139. doi: 10.3788/CO.20201301.0131
LUO Yi, LIANG Zhong-zhu, MENG De-jia, TAO Jin, LIANG Jing-qiu, QIN Zheng, HOU En-Zhu, QIN Yu-xin, LV Jing-guang, ZHANG Yu-hao. Study on long wavelength infrared broadband metasurface absorber via hybrid resonant mode[J]. Chinese Optics, 2020, 13(1): 131-139. doi: 10.3788/CO.20201301.0131
Citation: LUO Yi, LIANG Zhong-zhu, MENG De-jia, TAO Jin, LIANG Jing-qiu, QIN Zheng, HOU En-Zhu, QIN Yu-xin, LV Jing-guang, ZHANG Yu-hao. Study on long wavelength infrared broadband metasurface absorber via hybrid resonant mode[J]. Chinese Optics, 2020, 13(1): 131-139. doi: 10.3788/CO.20201301.0131

混合谐振模式宽带长波红外超表面吸收器研究

doi: 10.3788/CO.20201301.0131
基金项目: 国家自然科学基金(No.61735018, No.61376122, No.61805242);中国科学院青年创新促进会优秀会员基金(No.2014193);吉林省科技发展计划重点科技攻关项目(No.20170204077GX); 吉林省中青年科技创新领军人才及团队项目(No.20190101012JH); 应用光学国家重点实验室自主基金; 长春光机所-杜克大学国际合作基金; 长春光机所-复旦大学合作基金
详细信息
    作者简介:

    罗奕(1994-), 男, 湖北鄂州人, 硕士研究生, 2016年于东北大学获得学士学位, 现为中国科学院长春光学精密机械与物理研究所研究生, 主要从事微纳器件的设计与制造方面的研究。E-mail:luoyidarling@163.com

    梁中翥(1978-), 男, 四川广安人, 博士, 研究员, 博士生导师, 2007于吉林大学获得理学博士学位, 现为中国科学院长春光学精密机械与物理研究所研究员, 主要从事红外探测及微光机电系统研究。E-mail:liangzz@ciomp.ac.cn

  • 中图分类号: TN21

Study on long wavelength infrared broadband metasurface absorber via hybrid resonant mode

Funds: Supported by the National Natural Science Foundation of China (No.61735018, No.61376122, No.61805242); Excellent Member Fund of Youth Innovation Promotion Association of CAS (No.2014193); Scientific and Technological Development Project of Jilin province (No.20170204077GX); Leading Talents and Team Project of Scientific and Technological Innovation for Young and Middle-aged Groups in Jilin Province(No.20190101012JH); Independent fund of State Kay Laboratory of Applied Optics; Overseas Students Science and Technology Innovation and Entrepreneurship Projects; Project of CIOMP-Duke Collaborative Research; Project of CIOMP-Fudan University Collaborative Research
More Information
  • 摘要: 为了满足红外探测器件集成化和对红外宽光谱范围吸收的需求,设计了一种工作在长波红外波段(8~14 μm)的超宽带、高吸收、极化不敏感的超材料吸收器。通过在金属-介质-金属三层异质的超材料吸收器结构的顶部金属周围镶嵌一层介质形成超表面,以增加谐振强度和吸收带宽。在8~13.6 μm的带宽范围内,该结构有超过90%的平均吸收率,覆盖了大部分长波红外大气窗口波段,对红外探测领域有着重要意义。研究结果表明:镶嵌的金属-介质组成的介质波导模式和谐振腔模式的结合以及传播型表面等离激元模式的激发是形成宽带高吸收的主要原因,并且谐振模式的谐振波长可以通过相关参数来进行调控。本文的研究结果为可调谐宽带长波红外吸收材料的设计提供参考,该设计方法可推广到中波红外波段、甚至长波红外或其它波段。

     

  • 图 1  超材料吸收器的结构图

    Figure 1.  Schematic illustration of the metamaterial absorber

    图 2  吸收器的吸收光谱模拟图

    Figure 2.  Simulated absorption spectra of the absorber

    图 3  (a)~(b) x-z平面谐振波长处的电场分布图;(c)~(d) x-z平面谐振波长处的磁场分布图

    Figure 3.  (a)~(b) Electric field |E| distributions (colour bar in the x-z plane) at different resonant wavelengthes. (c)~(d) Magnetic field |M| distributions (colour bar in the x-z plane) at different resonant wavelengths

    图 4  结构参数对吸收性能的影响:(a)金属圆盘半径(r1),(b)介质圆盘半径(r2), (c)介质间隔层厚度(t2), (d)金属圆盘厚度(t3)

    Figure 4.  Effects of the geometric parameters on the absorption performance: (a) the radius of the metallic nanodisk (r1), (b) the radius of the dielectric nanodisk (r2), (c)the thickness of the dielectric (t2), (d) the thickness of the metallic nanodisk (t3)

    图 5  入射角度对吸收性能的影响:(a)TE极化波,(b)TM极化波

    Figure 5.  Influence of incident angle on absorption: the incident angles for TE-polarized (a) and TM-polarized(b)

  • [1] 梁秋群.金属纳米结构表面等离激元杂化和吸收特性的研究[D].北京: 中国科学院大学, 2015. http://www.irgrid.ac.cn/handle/1471x/1004792

    LIANG Q Q. Study on plasmon hybridization and optical absorption properties of metallic nanostructures[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese) http://www.irgrid.ac.cn/handle/1471x/1004792
    [2] 曹水艳.表面等离子体结构聚焦和吸收特性的研究[D].北京: 中国科学院大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-80139-1014218233.htm

    CAO SH Y. Study on the property of focusing and absorption of plasmonic nanostructures[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80139-1014218233.htm
    [3] 陈超瑜, 马妍, 方群.微流控器官芯片的研究进展[J].分析化学, 2019, 47(11):1711-1720. http://d.old.wanfangdata.com.cn/Periodical/fxhx201911001

    CHEN CH Y, MA Y, FANG Q. Advances in microfluidic organ-on-a-chip systems[J]. Chinese Journal of Analytical Chemistry, 2019, 47(11):1711-1720. http://d.old.wanfangdata.com.cn/Periodical/fxhx201911001
    [4] 范一强, 王洪亮, 高克鑫, 等.模块化微流控系统与应用[J].分析化学, 2018, 46(12):1863-1871. doi: 10.11895/j.issn.0253-3820.181552

    FAN Y Q, WANG H L, GAO K X, LIU J J, et al.. Applications of modular microfluidics technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12):1863-1871. doi: 10.11895/j.issn.0253-3820.181552
    [5] FANG X, MACDONALD K F, ZHELUDEV N I. Controlling light with light using coherent metadevices:all-optical transistor, summator and invertor[J]. Light:Science & Applications, 2015, 4, 292. http://cn.bing.com/academic/profile?id=16eab71e1f25f2ab335dcbb0754a012d&encoded=0&v=paper_preview&mkt=zh-cn
    [6] LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402. doi: 10.1103/PhysRevLett.100.207402
    [7] GRANT J, MA Y, SAHA S, et al.. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Optics Letters, 2011, 36(17):3476-3478. doi: 10.1364/OL.36.003476
    [8] 王月, 安西涛, 任伟, 等.纳米金膜及金壳表面局域等离激元对上转换荧光波长的选择调控[J].发光学报, 2019, 40(6):743-750. http://d.old.wanfangdata.com.cn/Periodical/fgxb201906006

    WANGY, AN X T, REN W, et al.. Wavelength Dependent Modulation of Upconversion Luminescence via Localized Surface Plasmon Resonance of Gold Nanofilm and Nanoshell[J].Chinese Journal of Luminescence, 2019, 40(6):743-750. http://d.old.wanfangdata.com.cn/Periodical/fgxb201906006
    [9] 李雪, 张然, 袁新芳, 等.基于金纳米棒@二氧化硅表面等离子体共振增强的有机太阳能电池[J].发光学报, 2018, 39(11):1579-1583. http://d.old.wanfangdata.com.cn/Periodical/fgxb201811013

    LI X, ZHANG R, YUAN X F, et al.. Surface Plasmon Resonance-enhanced Organic Solar Cells Based on Au Nanorods@SiO2 Core-shell Structures[J].Chinese Journal of Luminescence, 2018, 39(11):1579-1583. http://d.old.wanfangdata.com.cn/Periodical/fgxb201811013
    [10] 安西涛, 王月, 牟佳佳, 等.超薄金壳包覆NaYF4:Yb, Er@SiO2纳米结构的可控合成与表面增强上转换荧光[J].发光学报, 2018, 39(11):1505-1512. http://d.old.wanfangdata.com.cn/Periodical/fgxb201811003

    AN X T, WANG Y, MOU J J, et al..Controllable Synthesis and Surface-enhanced Upconversion Luminescence of Ultra-thin Gold Shell Coated NaYF4:Yb, Er@SiO2 Nanostructures[J].Chinese Journal of Luminescence, 2018, 39(11):1505-1512. http://d.old.wanfangdata.com.cn/Periodical/fgxb201811003
    [11] MAIER T, BRVCKL H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19):3012-3014. doi: 10.1364/OL.34.003012
    [12] MAIER T, BRUECKL H. Multispectral microbolometers for the midinfrared[J]. Optics Letters, 2010, 35(22):3766-3768. doi: 10.1364/OL.35.003766
    [13] MA W, JIA D L, WEN Y ZH, et al.. Diode-based microbolometer with performance enhanced by broadband metamaterial absorber[J]. Optics Letters, 2016, 41(13):2974-2977. doi: 10.1364/OL.41.002974
    [14] LIU X L, TYLER T, STARR T, et al.. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters, 2011, 107(4):045901. doi: 10.1103/PhysRevLett.107.045901
    [15] MA W, WEN Y ZH, YU X M, et al.. Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators[J]. Optics Express, 2013, 21(25):30724-30730. doi: 10.1364/OE.21.030724
    [16] ADOMANIS B M, WATTS C M, KOIRALA M, et al.. Bi-layer metamaterials as fully functional near-perfect infrared absorbers[J]. Applied Physics Letters, 2015, 107(2):021107. doi: 10.1063/1.4926416
    [17] GUO W L, LIU Y X, HAN T CH. Ultra-broadband infrared metasurface absorber[J]. Optics Express, 2016, 24(18):20586-20592. doi: 10.1364/OE.24.020586
    [18] DAI SH W, ZHAO D, LI Q, et al.. Double-sided polarization-independent plasmonic absorber at near-infrared region[J]. Optics Express, 2013, 21(11):13125-13133. doi: 10.1364/OE.21.013125
    [19] HUBAREVICH A, KUKHTA A, DEMIR H V, et al.. Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber[J]. Optics Express, 2015, 23(8):9753-9761. doi: 10.1364/OE.23.009753
    [20] WU SH L, GU Y, YE Y, et al.. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime[J]. Optics Express, 2018, 26(17):21479-21489. doi: 10.1364/OE.26.021479
    [21] HAN Q, FU Y Q, JIN L, et al.. Germanium nanopyramid arrays showing near-100% absorption in the visible regime[J]. Nano Research, 2015, 8(7):2216-2222. doi: 10.1007/s12274-015-0731-0
    [22] PALIK E D. Handbook of Optical Constants of Solids. Volume III[M]. New York:Academic Press, 1998.
    [23] HAI L D, QUIV D, TUNG N H, et al.. Conductive polymer for ultra-broadband, wide-angle, and polarization-insensitive metamaterial perfect absorber[J]. Optics Express, 2018, 26(25):33253-33262. doi: 10.1364/OE.26.033253
    [24] CHEN H T. Interference theory of metamaterial perfect absorbers[J]. Optics Express, 2012, 20(7):7165-7172. doi: 10.1364/OE.20.007165
  • 加载中
图(5)
计量
  • 文章访问数:  1343
  • HTML全文浏览量:  405
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-28
  • 修回日期:  2019-04-23
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回