留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双向大气信道激光传输的信道互易性研究

刘艺 赵义武 倪小龙 娄岩 姜会林 刘智

刘艺, 赵义武, 倪小龙, 娄岩, 姜会林, 刘智. 双向大气信道激光传输的信道互易性研究[J]. 中国光学, 2020, 13(1): 140-147. doi: 10.3788/CO.20201301.0140
引用本文: 刘艺, 赵义武, 倪小龙, 娄岩, 姜会林, 刘智. 双向大气信道激光传输的信道互易性研究[J]. 中国光学, 2020, 13(1): 140-147. doi: 10.3788/CO.20201301.0140
LIU Yi, ZHAO Yi-wu, NI Xiao-long, Lou Yan, JIANG Hui-lin, LIU Zhi. Channel reciprocity of bidirectional atmospheric laser transmission channels[J]. Chinese Optics, 2020, 13(1): 140-147. doi: 10.3788/CO.20201301.0140
Citation: LIU Yi, ZHAO Yi-wu, NI Xiao-long, Lou Yan, JIANG Hui-lin, LIU Zhi. Channel reciprocity of bidirectional atmospheric laser transmission channels[J]. Chinese Optics, 2020, 13(1): 140-147. doi: 10.3788/CO.20201301.0140

双向大气信道激光传输的信道互易性研究

doi: 10.3788/CO.20201301.0140
基金项目: 

国家自然科学基金 61475025

详细信息
    作者简介:

    刘艺(1992-), 女, 河北保定人, 博士研究生, 主要从事大气光学与空间激光通信传输方面的研究。E-mail:liuyi920611@163.com

    姜会林(1945—),男,辽宁辽中人,博士,教授、博士生导师,中国工程院院士,应用光学专家。E-mial:hljiang@cust.edu.cn

    刘智(1971-), 男, 吉林长春人, 博士, 教授, 1993年、2001年于长春光学精密机械学院分别获得学士、硕士学位, 2004年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要研究方向为空间激光通信技术和激光在复杂信道中的传输特性。E-mail:liuzhiqi@cust.edu.cn

  • 中图分类号: TN929.1

Channel reciprocity of bidirectional atmospheric laser transmission channels

Funds: 

National Natural Science Foundation of China 61475025

More Information
  • 摘要: 在大气信道激光传输中,大气湍流对系统性能会产生较大影响,主要体现为降低传输速率和增加误码率。在具有信道互易性的双向激光传输链路中,两终端光斑信号强度的变化相关,可以在终端提取信道状态信息,以对信道影响进行补偿,从而提高传输速率。本文首先在弱湍流条件下,根据Rytov近似理论推导了平面波双向传输链路接收到的光斑信号的相关系数与传输路径的关系,并给出解析式。结果表明,两终端接收的光斑信号的光通量具有相关性,且相关系数与传输路径有关。进一步搭建了双向收发共轴激光传输系统,并进行了外场试验,试验结果不仅验证了双向大气信道激光传输链路具有互易性,且两接收端光斑信号光强的实时变化趋势相同。本文结论对实现大气信道高速率、低误码率激光传输具有重要意义。
  • 图  1  双向大气信道激光传输链路示意图

    Figure  1.  Schematic diagram of bidirectional atmospheric channel laser transmission link

    图  2  试验链路示意图

    Figure  2.  Experimental link diagram

    图  3  双向收发共轴大气激光传输系统

    Figure  3.  Coaxial atmospheric laser transmission system with bidirectional transceiver

    图  4  弱湍流情况下信道相关系数μFI与传输路径ξ的关系

    Figure  4.  Relationship between channel correlation coefficient μFI and transmission path ξ under weak turbulence conditions

    图  5  双向自由空间激光传输链路两接收终端的光斑测量数据

    Figure  5.  Measurement data of two receivers in bidirectional free space laser transmission link

    图  6  30组数据样本的相关系数及归一化均方误差变化趋势

    Figure  6.  The correlation coefficient and normalized mean square error of 30 groups of data samples

  • [1] 任伟.空间激光通信研究现状及发展趋势[J].中国新通信, 2017, 19(24):5-7. doi: 10.3969/j.issn.1673-4866.2017.24.004

    REN W. Research status and development trend of space laser communication[J]. China New Telecommunications, 2017, 19(24):5-7. (in Chinese) doi: 10.3969/j.issn.1673-4866.2017.24.004
    [2] 任建迎, 孙华燕, 张来线, 等.空间激光通信发展现状及组网新方法[J].激光与红外, 2019, 49(2):143-150. doi: 10.3969/j.issn.1001-5078.2019.02.003

    REN J Y, SUN H Y, ZHANG L X, et al.. Development status of space laser communication and new method of networking[J]. Laser & Infrared, 2019, 49(2):143-150. (in Chinese) doi: 10.3969/j.issn.1001-5078.2019.02.003
    [3] MECHERLE G S, HORSTEIN M. Comparison of radio frequency and optical architectures for deep-space communications via a relay satellite[J]. Proceedings of SPIE, 1994, 2123:36-53. doi: 10.1117/12.184681
    [4] MORTAZY E, MORAVVEJ-FARSHI M K. A new model for optical communication systems[J]. Optical Fiber Technology, 2005, 11(1):69-80. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ded487cdf291abe851837e62b564a2e0
    [5] PURYEAR A L, SHAPIRO J H, PARENTI R R. Reciprocity-enhanced optical communication through atmospheric turbulence-part Ⅱ:communication architectures and performance[J]. Journal of Optical Communications and Networking, 2013, 5(8):888-900. doi: 10.1364/JOCN.5.000888
    [6] 陈绍娟, 向劲松, 李晓双.星地激光通信中多光束发射的最优发送[J].现代电信科技, 2013, 43(10):43-48. doi: 10.3969/j.issn.1002-5316.2013.10.009

    CHEN SH J, XIANG J S, LI X SH. Transmitter optimization in multi-beam transmitter for satellite-ground laser communication[J]. Modern Science & Technology of Telecommunications, 2013, 43(10):43-48. (in Chinese) doi: 10.3969/j.issn.1002-5316.2013.10.009
    [7] PARENTI R R, ROTH J M, GRECO J A, et al.. Channel reciprocity in single-mode free-space optical links[C]. Proceedings of 2012 IEEE Photonics Society Summer Topical Meeting Series, IEEE, 2012: 113-114. https://ieeexplore.ieee.org/document/6280751/
    [8] PARENTI R R, ROTH J M, SHAPIRO J H, et al.. Experimental observations of channel reciprocity in single-mode free-space optical links[J]. Optics Express, 2012, 20(19):21635-21644. doi: 10.1364/OE.20.021635
    [9] KOLKA Z, BIOLKOVA V, WILFERT O, et al.. Simulation model of correlated FSO channels[C]. Proceedings of 2015 Conference on Microwave Techniques, IEEE, 2015: 1-4. https://ieeexplore.ieee.org/document/7120328
    [10] ANDRÉP S, PINTO A N. Chromatic dispersion fluctuations in optical fibers due to temperature and its effects in high-speed optical communication systems[J]. Optics Communications, 2005, 246(4-6):303-311. doi: 10.1016/j.optcom.2004.11.017
    [11] SHAPIRO J H. Reciprocity of the turbulent atmosphere[J]. Journal of the Optical Society of America, 1971, 61(4):492-495. doi: 10.1364/JOSA.61.000492
    [12] GIGGENBACH D, COWLEY W, GRANT K, et al.. Experimental verification of the limits of optical channel intensity reciprocity[J]. Applied Optics, 2012, 51(16):3145-3452. doi: 10.1364/AO.51.003145
    [13] PARTHASARATHY S, GIGGENBACH D, BARRIOS R, et al.. Simulative verification of channel reciprocity in free-space optical inter-HAP links[C]. Proceedings of 2017 IEEE International Conference on Space Optical Systems and Applications, IEEE, 2017: 154-159.
    [14] 王孛, 施鹏, 赵生妹.大气湍流下自由光通信信道模型的数值仿真[J].南京邮电大学学报(自然科学版), 2012, 32(4):32-37. doi: 10.3969/j.issn.1673-5439.2012.04.007

    WANG B, SHI P, ZHAO SH M. Numerical simulations of FSO channel through atmosphere turbulence[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2012, 32(4):32-37. (in Chinese) doi: 10.3969/j.issn.1673-5439.2012.04.007
    [15] MINET J, VORONTSOV M A, POLNAU E, et al.. Enhanced correlation of received power-signal fluctuations in bidirectional optical links[J]. Journal of Optics, 2013, 15(2):022401. doi: 10.1088/2040-8978/15/2/022401
    [16] CHEN CH Y, YANG H M. Correlation between light-flux fluctuations of two counter-propagating waves in weak atmospheric turbulence[J]. Optics Express, 2017, 25(11):12779-12795. doi: 10.1364/OE.25.012779
    [17] PERLOT N, GIGGENBACH D. Scintillation correlation between forward and return spherical waves[J]. Applied Optics, 2012, 51(15):2888-2893. doi: 10.1364/AO.51.002888
    [18] TATARSKII V I. Wave Propagation in A Turbulent Medium[M]. New York:McGraw-Hill, 1961.
    [19] RYTOV S M, KRAVTSOV Y A, TATARSKII V I. Principles of Statistical Radiophysics:Wave Propagation Through Random Media[M]. Berlin:Springer-Verlag, 1989.
    [20] 饶瑞中.现代大气光学[M].北京:科学出版社, 2012.

    RAO R ZH. Modern Atmospheric Optics[M]. Beijing:Science Press, 2012. (in Chinese)
    [21] KHALIGHI M A, SCHWARTZ N, BOURENNANE S, et al.. Fading reduction by aperture averaging and spatial diversity in optical wireless systems[J]. IEEE/OSA Journal of Optical Communications and Networking, 2009, 1(6):580-593. doi: 10.1364/JOCN.1.000580
    [22] 张逸新, 迟泽英.光波在大气中的传输与成像[M].北京:国防工业出版社, 2001.

    ZHANG Y X, CHI Z Y. Laser Wave Propagation and Imaging Throng Atmosphere[M]. Beijing:National Defense Industry Press, 2001. (in Chinese)
    [23] ISHIMARU A. Wave Propagation and Scattering in Random Media[M]. New York:IEEE Press, 1977.
  • 加载中
图(6)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  146
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-27
  • 修回日期:  2019-08-20
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回