留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

五维自由度衍射光栅精密测量系统

吕强 王玮 刘兆武 宋莹 姜珊 刘林 巴音贺希格 李文昊

吕强, 王玮, 刘兆武, 宋莹, 姜珊, 刘林, 巴音贺希格, 李文昊. 五维自由度衍射光栅精密测量系统[J]. 中国光学, 2020, 13(1): 189-202. doi: 10.3788/CO.20201301.0189
引用本文: 吕强, 王玮, 刘兆武, 宋莹, 姜珊, 刘林, 巴音贺希格, 李文昊. 五维自由度衍射光栅精密测量系统[J]. 中国光学, 2020, 13(1): 189-202. doi: 10.3788/CO.20201301.0189
LV Qiang, WANG Wei, LIU Zhao-wu, SONG Ying, JIANG Shan, LIU Lin, BAYANHESHIG, LI Wen-hao. Grating-based precision measurement system for five-dimensional measurement[J]. Chinese Optics, 2020, 13(1): 189-202. doi: 10.3788/CO.20201301.0189
Citation: LV Qiang, WANG Wei, LIU Zhao-wu, SONG Ying, JIANG Shan, LIU Lin, BAYANHESHIG, LI Wen-hao. Grating-based precision measurement system for five-dimensional measurement[J]. Chinese Optics, 2020, 13(1): 189-202. doi: 10.3788/CO.20201301.0189

五维自由度衍射光栅精密测量系统

doi: 10.3788/CO.20201301.0189
基金项目: 

国家自然科学基金资助项目 No.61905245

吉林省科技发展计划项目 No.20190303019SF

吉林省科技发展计划项目 No.20190103158JH

广东省重点领域研发计划项目 No.2019B010144001

详细信息
    作者简介:

    吕强(1992-), 男, 山东德州人, 博士研究生, 2014年于山东师范大学获得学士学位, 2019年于中国科学院长春光学精密机械与物理研究获得博士学位, 主要从事衍射光栅及精密测量等方面的研究。E-mail:lq_0119@126.com

    李文昊(1980-), 男, 内蒙古赤峰人, 博士, 研究员, 2002年于陕西科技大学获得学士学位, 2008年于中国科学院长春光学精密机械与物理研究所获得博士学位, 主要从事平面、凹面全息光栅的理论设计及制作工艺, 光谱仪器、精密位移测量等方面的研究。E-mail:liwh@ciomp.ac.cn

  • 中图分类号: O439;TH741

Grating-based precision measurement system for five-dimensional measurement

Funds: 

Supported by National Natural Science Foundation of China No.61905245

Jilin Province Science & Technology Development Program Project No.20190303019SF

Jilin Province Science & Technology Development Program Project No.20190103158JH

R & D projects in key areas of Guangdong Province No.2019B010144001

More Information
    Author Bio:

    LV Qiang(1992—),Male, from Dezhou, Shandong, Ph,D. and is mainly engaged in diffraction grating and precision measurement,E-mail:lq_0119@126.com

    Corresponding author: LI Wen-hao, E-mail:liwh@ciomp.ac.cn
  • 摘要: 为了在保证结构简单的前提下,实现衍射光栅精密测量系统的大量程、高精度、多维度测量,设计了能够同时测量位移和角度的五维自由度衍射光栅精密测量系统。基于利特罗对称式光路结构,采用高刻线密度的一维衍射光栅以及外差干涉原理实现了沿光栅矢量方向和光栅法线方向的二维位移测量;通过引入高精度的位置灵敏探测器,结合±1级衍射光与光栅之间的角度变化关系实现了对光栅俯仰、偏摆和滚转三个维度的角度误差测量。实验结果表明:该衍射光栅精密测量系统能够实现分辨力优于4 nm的二维位移测量以及分辨力优于1″的三维角度测量,其位移测量范围只受限于光栅的尺寸,量程大大增加。该衍射光栅精密测量系统在精密测量领域有重要意义。
  • 图  1  衍射光栅精密测量系统结构示意图

    Figure  1.  Schematic diagram of grating-based precision measurement system

    图  2  光斑位置与光栅旋转角度关系的示意图

    Figure  2.  Schematic diagram of the relationship between spot position and the rotation angle of the grating

    图  3  角度测试实验装置图

    Figure  3.  Diagram of experimental device for angle measurement

    图  4  位移测试实验装置图

    Figure  4.  Diagram of experimental device for displacement measurement

    图  5  静止时衍射光栅精密测量系统对3个方向的测量结果

    Figure  5.  Rotation angle measurement results in three directions by proposed system at rest

    图  6  俯仰角变化10″的测量结果

    Figure  6.  Measurement results of pitch angle for 10″ change

    图  7  偏摆角变化10″的测量结果

    Figure  7.  Measurement results of yaw angle for 10″ change

    图  8  滚转角变化10″的测量结果

    Figure  8.  Measurement results of roll angle for 10″ change

    图  9  俯仰角变化1″的测量结果

    Figure  9.  Measurement results of pitch angle for 1″ change

    图  10  偏摆角变化1″的测量结果

    Figure  10.  Measurement results of yaw angle for 1″ change

    图  11  滚转角变化1″的测量结果

    Figure  11.  Measurement results of roll angle for 1″ change

    图  12  x方向5 mm位移测量结果

    Figure  12.  Measurement results for 5 mm displacement in x direction

    图  13  z方向5 mm位移测量结果

    Figure  13.  Measurement results for 5 mm displacement in z direction

    图  14  x方向4 nm位移测量结果

    Figure  14.  Measurement results for 4 nm displacement in x direction

    图  15  z方向4 nm位移测量结果

    Figure  15.  Measurement results for 4 nm displacement in z direction

  • [1] MALINAUSKAS M, ŽUKAUSKAS A, HASEGAWA S, et al.. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 2016, 5(8): e16133. http://cn.bing.com/academic/profile?id=239014bfba62c6c76ee4a8ba0164c6a7&encoded=0&v=paper_preview&mkt=zh-cn
    [2] URNESS A C, MOORE E D, KAMYSIAK K K, et al.. Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput[J]. Light: Science & Applications, 2013, 2(3): e56. http://cn.bing.com/academic/profile?id=fc6f15f2d51a403e591f169c2b90714a&encoded=0&v=paper_preview&mkt=zh-cn
    [3] SUGIOKA K, CHENG Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149. http://cn.bing.com/academic/profile?id=4fbfbe6c047a9e26acc6b3e36ccf3030&encoded=0&v=paper_preview&mkt=zh-cn
    [4] 敬世美, 张轩宇, 梁居发, 等.飞秒激光刻写的超短光纤布拉格光栅及其传感特性[J].中国光学, 2017, 10(4): 449-454. http://www.chineseoptics.net.cn/CN/abstract/abstract9528.shtml

    JING SH M, ZHANG X Y, LIANG J F, et al.. Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics[J]. Chinese Optics, 2017, 10(4): 449-454. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9528.shtml
    [5] 陈宝刚, 明名, 吕天宇.大口径球面反射镜曲率半径的精确测量[J].中国光学, 2014, 7(1): 163-168. http://www.chineseoptics.net.cn/CN/abstract/abstract9111.shtml

    CHEN B G, MING M, LV T Y. Precise measurement of curvature radius for spherical mirror with large aperture[J]. Chinese Optics, 2014, 7(1): 163-168. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9111.shtml
    [6] LOU Y T, YAN L P, CHEN B Y, et al.. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology[J]. Optics Express, 2017, 25(6): 6805-6821. doi: 10.1364/OE.25.006805
    [7] ZHANG E ZH, CHEN B Y, ZHENG H, et al.. Laser heterodyne interferometer with rotational error compensation for precision displacement measurement[J]. Optics Express, 2018, 26(1): 90-98. doi: 10.1364/OE.26.000090
    [8] 吕强, 李文昊, 巴音贺希格, 等.基于衍射光栅的干涉式精密位移测量系统[J].中国光学, 2017, 10(1): 39-50. http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml

    LV Q, LI W H, BAYANHESHIG, et al.. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics, 2017, 10(1): 39-50. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml
    [9] ESTLER W T. High-accuracy displacement interferometry refin air[J]. Applied Optics, 1985, 24(6): 808-815. doi: 10.1364/AO.24.000808
    [10] GERASIMOV F M. Use of diffraction gratings for controlling a ruling engine[J]. Applied Optics, 1967, 6(11): 1861-1865. doi: 10.1364/AO.6.001861
    [11] HSIEH H L, CHEN J C, LERONDEL G, et al.. Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer[J]. Optics Express, 2011, 19(10): 9770-9782. doi: 10.1364/OE.19.009770
    [12] CHUNG Y CH, FAN K C, LEE B C. Development of a novel planar encoder for 2D displacement measurement in nanometer resolution and accuracy[C]. Proceedings of the 2011 9th World Congress on Intelligent Control and Automation, IEEE, 2011: 449-453. https://www.researchgate.net/publication/241187504_Development_of_a_novel_planar_encoder_for_2D_displacement_measurement_in_nanometer_resolution_and_accuracy
    [13] GAO W, KIMURA A. A three-axis displacement sensor with nanometric resolution[J]. CIRP Annals, 2007, 56(1): 529-532. doi: 10.1016/j.cirp.2007.05.126
    [14] KIMURA A, GAO W, KIM W, et al.. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement[J]. Precision Engineering, 2012, 36(4): 576-585. doi: 10.1016/j.precisioneng.2012.04.005
    [15] LU Y C, WEI CH L, JIA W, et al.. Two-degree-freedom displacement measurement based on a short period grating in symmeric Littrow configuration[J]. Optics Communications, 2016, 380: 382-386. https://www.sciencedirect.com/science/article/abs/pii/S0030401816305132
    [16] ŠIAUDINYTE · L, MOLNAR G, KÖNING R, et al.. Multi-dimensional grating interferometer based on fibre-fed measurement heads arranged in Littrow configuration[J]. Measurement Science and Technology, 2018, 29(5): 054007. doi: 10.1088/1361-6501/aaa8b4
    [17] LV Q, LIU ZH W, WANG W, et al.. Simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement[J]. Applied Optics, 2018, 57(31): 9455-9463. doi: 10.1364/AO.57.009455
    [18] LIU C H, HUANG H L, LEE H W. Five-degrees-of-freedom diffractive laser encoder[J]. Applied Optics, 2009, 48(14): 2767-2777. doi: 10.1364/AO.48.002767
    [19] GAO W, SAITO Y, MUTO H, et al.. A three-axis autocollimator for detection of angular error motions of a precision stage[J]. CIRP Annals, 2011, 60(1): 515-518. doi: 10.1016/j.cirp.2011.03.052
    [20] LI X H, GAO W, MUTO H, et al.. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage[J]. Precision Engineering, 2013, 37(3): 771-781. doi: 10.1016/j.precisioneng.2013.03.005
    [21] TEIMEL A. Technology and applications of grating interferometers in high-precision measurement[J]. Precision Engineering, 1992, 14(3): 147-154. doi: 10.1016-0141-6359(92)90003-F/
    [22] 周炳琨, 高以智, 陈倜嵘, 等.激光原理[M]. 6版.北京:国防工业出版社, 2009.

    ZHOU B K, GAO Y ZH, CHEN T R, et al.. Laser Principle[M]. 6th ed. Beijing: National Defend Industry Press, 2009. (in Chinese)
  • 加载中
图(15)
计量
  • 文章访问数:  448
  • HTML全文浏览量:  131
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-04-28
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回