| [1] | MALINAUSKAS M,  ŽUKAUSKAS A, HASEGAWA S,  et al.. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications,  2016, 5(8): e16133. http://cn.bing.com/academic/profile?id=239014bfba62c6c76ee4a8ba0164c6a7&encoded=0&v=paper_preview&mkt=zh-cn | 
		
				| [2] | URNESS A C, MOORE E D, KAMYSIAK K K,  et al.. Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput[J]. Light: Science & Applications, 2013, 2(3): e56. http://cn.bing.com/academic/profile?id=fc6f15f2d51a403e591f169c2b90714a&encoded=0&v=paper_preview&mkt=zh-cn | 
		
				| [3] | SUGIOKA K, CHENG Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149. http://cn.bing.com/academic/profile?id=4fbfbe6c047a9e26acc6b3e36ccf3030&encoded=0&v=paper_preview&mkt=zh-cn | 
		
				| [4] | 敬世美, 张轩宇, 梁居发, 等.飞秒激光刻写的超短光纤布拉格光栅及其传感特性[J].中国光学, 2017, 10(4): 449-454. http://www.chineseoptics.net.cn/CN/abstract/abstract9528.shtmlJING SH M, ZHANG X Y, LIANG J F,  et al.. Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics[J]. Chinese Optics, 2017, 10(4): 449-454. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9528.shtml | 
		
				| [5] | 陈宝刚, 明名, 吕天宇.大口径球面反射镜曲率半径的精确测量[J].中国光学, 2014, 7(1): 163-168. http://www.chineseoptics.net.cn/CN/abstract/abstract9111.shtmlCHEN B G, MING M, LV T Y. Precise measurement of curvature radius for spherical mirror with large aperture[J]. Chinese Optics, 2014, 7(1): 163-168. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9111.shtml | 
		
				| [6] | LOU Y T, YAN L P, CHEN B Y,  et al.. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology[J]. Optics Express,  2017, 25(6): 6805-6821. doi:  10.1364/OE.25.006805 | 
		
				| [7] | ZHANG E ZH, CHEN B Y, ZHENG H,  et al.. Laser heterodyne interferometer with rotational error compensation for precision displacement measurement[J]. Optics Express, 2018, 26(1): 90-98. doi:  10.1364/OE.26.000090 | 
		
				| [8] | 吕强, 李文昊, 巴音贺希格, 等.基于衍射光栅的干涉式精密位移测量系统[J].中国光学, 2017, 10(1): 39-50. http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtmlLV Q, LI W H, BAYANHESHIG,  et al.. Interferometric precision displacement measurement system based on diffraction grating[J]. Chinese Optics, 2017, 10(1): 39-50. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9490.shtml | 
		
				| [9] | ESTLER W T. High-accuracy displacement interferometry refin air[J]. Applied Optics, 1985, 24(6): 808-815. doi:  10.1364/AO.24.000808 | 
		
				| [10] | GERASIMOV F M. Use of diffraction gratings for controlling a ruling engine[J]. Applied Optics,  1967, 6(11): 1861-1865. doi:  10.1364/AO.6.001861 | 
		
				| [11] | HSIEH H L, CHEN J C, LERONDEL G,  et al.. Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer[J]. Optics Express, 2011, 19(10): 9770-9782. doi:  10.1364/OE.19.009770 | 
		
				| [12] | CHUNG Y CH, FAN K C, LEE B C. Development of a novel planar encoder for 2D displacement measurement in nanometer resolution and accuracy[C]. Proceedings of the 2011 9th World Congress on Intelligent Control and Automation, IEEE, 2011: 449-453. https://www.researchgate.net/publication/241187504_Development_of_a_novel_planar_encoder_for_2D_displacement_measurement_in_nanometer_resolution_and_accuracy | 
		
				| [13] | GAO W, KIMURA A. A three-axis displacement sensor with nanometric resolution[J]. CIRP Annals, 2007, 56(1): 529-532. doi:  10.1016/j.cirp.2007.05.126 | 
		
				| [14] | KIMURA A, GAO W, KIM W,  et al.. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement[J]. Precision Engineering, 2012, 36(4): 576-585. doi:  10.1016/j.precisioneng.2012.04.005 | 
		
				| [15] | LU Y C, WEI CH L, JIA W,  et al.. Two-degree-freedom displacement measurement based on a short period grating in symmeric Littrow configuration[J]. Optics Communications,  2016, 380: 382-386. https://www.sciencedirect.com/science/article/abs/pii/S0030401816305132 | 
		
				| [16] | ŠIAUDINYTE · L, MOLNAR G, KÖNING R,  et al.. Multi-dimensional grating interferometer based on fibre-fed measurement heads arranged in Littrow configuration[J]. Measurement Science and Technology, 2018, 29(5): 054007. doi:  10.1088/1361-6501/aaa8b4 | 
		
				| [17] | LV Q, LIU ZH W, WANG W,  et al.. Simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement[J]. Applied Optics, 2018, 57(31): 9455-9463. doi:  10.1364/AO.57.009455 | 
		
				| [18] | LIU C H, HUANG H L, LEE H W. Five-degrees-of-freedom diffractive laser encoder[J]. Applied Optics, 2009, 48(14): 2767-2777. doi:  10.1364/AO.48.002767 | 
		
				| [19] | GAO W, SAITO Y, MUTO H,  et al.. A three-axis autocollimator for detection of angular error motions of a precision stage[J]. CIRP Annals, 2011, 60(1): 515-518. doi:  10.1016/j.cirp.2011.03.052 | 
		
				| [20] | LI X H, GAO W, MUTO H,  et al.. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage[J]. Precision Engineering, 2013, 37(3): 771-781. doi:  10.1016/j.precisioneng.2013.03.005 | 
		
				| [21] | TEIMEL A. Technology and applications of grating interferometers in high-precision measurement[J]. Precision Engineering, 1992, 14(3): 147-154. doi:  10.1016-0141-6359(92)90003-F/ | 
		
				| [22] | 周炳琨, 高以智, 陈倜嵘, 等.激光原理[M]. 6版.北京:国防工业出版社, 2009.ZHOU B K, GAO Y ZH, CHEN T R,  et al.. Laser Principle[M]. 6th ed. Beijing: National Defend Industry Press, 2009. (in Chinese) |