留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用解析法对Nd:YAG单晶光纤的温度场研究

田晓 齐兵 金发成 黄宝玉 张俊

田晓, 齐兵, 金发成, 黄宝玉, 张俊. 采用解析法对Nd:YAG单晶光纤的温度场研究[J]. 中国光学, 2020, 13(2): 258-265. doi: 10.3788/CO.20201302.0258
引用本文: 田晓, 齐兵, 金发成, 黄宝玉, 张俊. 采用解析法对Nd:YAG单晶光纤的温度场研究[J]. 中国光学, 2020, 13(2): 258-265. doi: 10.3788/CO.20201302.0258
TIAN Xiao, QI Bing, JIN Fa-cheng, HUANG Bao-yu, ZHANG Jun. Research on temperature field in high-power Nd: YAG single crystal fiber laser by analytical method[J]. Chinese Optics, 2020, 13(2): 258-265. doi: 10.3788/CO.20201302.0258
Citation: TIAN Xiao, QI Bing, JIN Fa-cheng, HUANG Bao-yu, ZHANG Jun. Research on temperature field in high-power Nd: YAG single crystal fiber laser by analytical method[J]. Chinese Optics, 2020, 13(2): 258-265. doi: 10.3788/CO.20201302.0258

采用解析法对Nd:YAG单晶光纤的温度场研究

doi: 10.3788/CO.20201302.0258
基金项目: 

国家自然科学基金资助项目 11947080

陕西省自然科学基础研究计划资助项目 2019JM-447

陕西省自然科学基础研究计划资助项目 2019JQ-914

西安航空学院博士及高层人才科研启动基金资助项目 206011625

西安航空学院大学生创新创业训练计划项目 DCX2019042

详细信息
    作者简介:

    田晓(1984-), 女, 陕西渭南人, 博士, 讲师, 2007年于西安理工大学获得学士学位; 2010年、2015年于中国科学院研究生院分别获得硕士、博士学位, 主要从事激光技术及应用方面的研究。E-mail:daisy_1005@126.com.cn

  • 中图分类号: TN24

Research on temperature field in high-power Nd: YAG single crystal fiber laser by analytical method

Funds: 

National Natural Science Foundation of China 11947080

Natural Science Basic Research Program of Shaanxi 2019JM-447

Natural Science Basic Research Program of Shaanxi 2019JQ-914

Doctoral and Senior Talent Research Fund of Xi′an Aeronautical University 206011625

College Students′ Innovation and Entrepreneurship Training Program of Xi′an Aeronautical University DCX2019042

More Information
  • 摘要: 采用解析法对Nd:YAG单晶光纤激光器热效应相关的光纤温度场分布进行研究。建立了Nd:YAG单晶光纤热模型,在单晶光纤所满足的边界条件下通过解析求解热传导方程,得到在高功率808 nm泵浦光抽运下产生946 nm激光的单晶光纤温度场分布,并与传统Nd:YAG激光晶体的温度场进行比较,然后分别与同泵浦条件下的有限元数值方法的分析结果进行研究对比,最后分析泵浦光参数、单晶光纤参数等对温度场的影响。结果表明,功率为86 W的泵浦光入射至单晶光纤端面的最高温升仅为30.98℃,明显优于同泵浦条件下传统Nd:YAG晶体的端面温升结果94.37℃,与有限元数值法得到的Nd:YAG单晶光纤19℃温升结果相比,该解析法结果更接近于实验的测量值31℃,能够更精确描述晶体光纤温度场。本文可对单晶光纤激光器热效应的精确研究提供一定参考,进而有利于提高单晶光纤激光器的性能。
  • 图  1  Nd :YAG单晶光纤激光器结构示意图

    Figure  1.  Schematic diagram of Nd :YAG SCF laser

    图  2  Nd :YAG单晶光纤温度场

    Figure  2.  Temperature field of Nd :YAG SCF

    图  3  Nd :YAG单晶光纤端面温升

    Figure  3.  Temperature rise of the incident end of Nd :YAG SCF

    图  4  Nd :YAG晶体端面温升

    Figure  4.  Temperature rise of the incident end of Nd :YAG crystal

    图  5  吸收系数对Nd :YAG单晶光纤温度分布的影响

    Figure  5.  Influence of absorption coefficient on temperature distribution of Nd :YAG SCF

    图  6  纤芯尺寸对Nd :YAG单晶光纤温度分布的影响

    Figure  6.  Influence of SCF core radius on temperature distribution

    图  7  泵浦光光斑尺寸对Nd :YAG单晶光纤温度分布的影响

    Figure  7.  Influence of pump laser beam radius on temperature distribution

    图  8  单晶光纤端面温升的有限元方法分析结果

    Figure  8.  Temperature rise of the incident end face of Nd:YAG SCF calculated by finite element analysis

    图  9  单晶光纤端面温升的解析法分析结果

    Figure  9.  Temperature rise of the incident end face of Nd:YAG SCF calculated by analytical method

  • [1] LIMPERT J, DEGUIL R N, MANEK H I, et al.. High-power rod-type photonic crystal fiber laser[J]. Opt. Express, 2005, 13(4):1055-1058. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227131697/
    [2] 孟佳, 张伟, 赵开祺, 等.国产化掺铥光纤激光振荡器性能研究[J].中国光学, 2019, 12(5):1109-1117. doi: 10.3788/CO.20191205.1109

    MENG J, ZHANG W, ZHAO K Q, et al.. Investigation on the performance of a homemade thulium-doped fiber laser oscillator[J]. Chinese Optics, 2019, 12(5):1109-1117. (in Chinese) doi: 10.3788/CO.20191205.1109
    [3] 赵小丽, 张钰民, 庄炜, 等.级联光栅结合Sagnac环的可调谐光纤激光器[J].发光学报, 2019, 40(3):357-365. http://d.old.wanfangdata.com.cn/Periodical/fgxb201903011

    ZHAO X L, ZHANG Y M, ZHUANG W, et al.. Tunable fiber laser based on cascaded grating combing with sagnac loop[J]. Chinese Journal of Luminescence, 2019, 40(3):357-365. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201903011
    [4] 高静.可调谐锁模光纤激光器泵浦的超连续谱光源[J].光学 精密工程, 2018, 26(1):25-30. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801004

    GAO J. Tunable mode-locked fiber laser pumped supercontinuum source[J]. Opt.Precision Eng., 2018, 26(1):25-30. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801004
    [5] 史健松, 于源华, 王美娇, 等.光纤生物传感器在HER3抗体药物定量检测中的应用[J].中国光学, 2018, 11(3):503-512. doi: 10.3788/CO.20181103.0503

    SHI J S, YU Y H, WANG M J, et al.. Application of optical fiber biosensor in quantitative detection of HER3 antibody[J]. Chinese Optics, 2018, 11(3):503-512. (in Chinese) doi: 10.3788/CO.20181103.0503
    [6] 曹忠, 李文峰, 刘陈, 等.基于低功耗蓝牙传输的电位型嵌入式无线传感监测系统的研制[J].分析化学, 2019, 47(2):229-236. http://d.old.wanfangdata.com.cn/Periodical/fxhx201902009

    CAO ZH, LI W F, LIU CH, et al.. Design and fabrication of embedded wireless monitoring system based on bluetooth low energy transmission for potentiometric sensor[J]. Chinese J. Anal. Chem., 2019, 47(2):229-236. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201902009
    [7] 高颖, 戴连奎, 朱华东, 等.基于拉曼光谱的天然气主要组分定量分析[J].分析化学, 2019, 47(1):67-76. http://d.old.wanfangdata.com.cn/Periodical/fxhx201901009

    GAO Y, DAI L K, ZHU H D, et al.. Quantitative analysis of main components of natural gas based on Raman spectroscopy[J]. Chinese J. Anal. Chem., 2019, 47(1):67-76. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201901009
    [8] MARKOVIC V, ROHRBACHER A, HOFMANN P, et al.. 160W 800 fs Yb:YAG single crystal fiber amplifier without CPA[J]. Optics Express, 2015, 23(20):25883-25888.
    [9] WU T C, CHI Y C, WANG H Y, et al.. Blue laser diode enables underwater communication at 12.4 Gbps[J]. Scientific Reports, 2017, 7:40480.
    [10] OU S L, CHEN S C, LIN Y C, et al.. Characterization and crystallization kinetics of sputtered NiSi thin films for blue laser optical recording application[J]. Vacuum, 2017, 140:144-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c3a5d9999f05e36cd9cde5b08f9f5ca
    [11] DOHI O, YAGI N, MAJIMA A, et al.. Diagnostic ability of magnifying endoscopy with blue laser imaging for early gastric cancer:a prospective study[J]. Gastric Cancer, 2017, 20(2):297-303.
    [12] 俞航航, 陈飞, 李耀彪, 等.双光子吸收碱金属蒸气激光器研究进展[J].中国光学, 2019, 12(1):38-47. doi: 10.3788/CO.20191201.0038

    YU H H, CHEN F, LI Y B, et al.. Research progress on the two-photon absorption alkali vapor laser[J]. Chinese Optics, 2019, 12(1):38-47. (in Chinese) doi: 10.3788/CO.20191201.0038
    [13] BOBROVNIKOV S M, VOROZHTSOV A B, GORLOV V, et al.. Lidar detection of explosive vapors in the atmosphere[J]. Russian Physics Journal, 2016, 58(9):1217-1225.
    [14] ZHANG G, ZHU H Y, HUANG CH H, et al.. Diode-side-pumped Nd:YAG laser at 1338 nm[J]. Optics Letters, 2009, 34(10):1495-1497. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231410689/
    [15] DÉLEN X, MARTIAL I, DIDIERJEAN J, et al.. 34W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm[J]. Applied Physics B, 2011, 104:1-4.
    [16] DEYRA L, MARTIAL I, DIDIERJEAN J, et al.. 3W, 300μJ, 25ns pulsed 473nm blue laser based on actively Q-switched Nd:YAG single-crystal fiber oscillator at 946 nm[J]. Optics Letters, 2013, 38(16):3013-3016.
    [17] ZHOU Q H, CHEN L F, XU X Y. Numerical analysis of the output power of the injection-locked CW Ti:sapphire lasers[J]. Optics Communications, 2011, 284(13):3378-3382.
    [18] NGUYEN V B, GUBANOVA L A, HOANG T L. Suppression of parasitic modes in a YAG:Nd slab laser using selective coating[J]. Journal of Optical Technology, 2018, 85(1):53-57.
  • 加载中
图(9)
计量
  • 文章访问数:  687
  • HTML全文浏览量:  341
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 修回日期:  2019-10-16
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回