留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光扫描阵列结构增强不锈钢与塑料的连接强度

李彦清 范海琦 朱奎名 刘双宇

李彦清, 范海琦, 朱奎名, 刘双宇. 激光扫描阵列结构增强不锈钢与塑料的连接强度[J]. 中国光学, 2020, 13(2): 313-322. doi: 10.3788/CO.20201302.0313
引用本文: 李彦清, 范海琦, 朱奎名, 刘双宇. 激光扫描阵列结构增强不锈钢与塑料的连接强度[J]. 中国光学, 2020, 13(2): 313-322. doi: 10.3788/CO.20201302.0313
LI Yan-qing, FAN Hai-qi, ZHU Kui-ming, LIU Shuang-yu. Enhanced bonding strength between stainless steel and plastic by using laser scanning array structure[J]. Chinese Optics, 2020, 13(2): 313-322. doi: 10.3788/CO.20201302.0313
Citation: LI Yan-qing, FAN Hai-qi, ZHU Kui-ming, LIU Shuang-yu. Enhanced bonding strength between stainless steel and plastic by using laser scanning array structure[J]. Chinese Optics, 2020, 13(2): 313-322. doi: 10.3788/CO.20201302.0313

激光扫描阵列结构增强不锈钢与塑料的连接强度

doi: 10.3788/CO.20201302.0313
基金项目: 

国家自然科学基金项目 51305044

详细信息
    作者简介:

    李彦清(1970—), 男, 黑龙江泰来人, 副教授, 1995年于长春光学精密机械学院获得硕士学位, 主要从事激光焊接、光电检测技术等方面的研究。E-mail:liyanqing@cust.edu.cn

    刘双宇(1978—), 男, 吉林农安人, 教授, 2007年于吉林大学获得博士学位, 主要从事仿生表面与激光增减材制造等方面的研究。E-mail:liushuangyu@cust.edu.cn

  • 中图分类号: TG156.3

Enhanced bonding strength between stainless steel and plastic by using laser scanning array structure

Funds: 

National Natural Science Foundation of China 51305044

More Information
  • 摘要: 本文采用光纤激光器在不锈钢表面上制备圆形阵列结构来增强不锈钢与塑料的连接强度。研究了激光制备的圆形阵列结构参数以及连接参数对不锈钢与塑料连接强度的影响。结果表明,不锈钢表面经过激光扫描构形处理后能显著提高不锈钢与塑料的连接强度,在压力作用下,熔融塑料渗入激光构造微孔形成的机械互锁是增强不锈钢与塑料连接强度的主要机制。激光构形后不锈钢表面上的毛刺高度、数量以及覆盖率对连接接头的连接强度有重要影响。毛刺高度为10~20 μm,毛刺数量占比Tm小于14.82%时,不锈钢与塑料在连接面处断裂,剪切力随着Tm的增加而增加;当Tm值高于14.82%时,在塑料处断裂,且剪切力数值在塑料的平均拉伸断裂力(950 N)上下浮动。不锈钢与塑料连接接头断裂于塑料处时所对应的最小覆盖率为38.5%,此时剪切力为900 N。此外,激光扫描处理过程中不锈钢与塑料连接的温度与压力对连接强度有重要影响,在加热温度为400℃时,不锈钢与塑料连接接头的剪切力最强;当压力为75 kN时,不锈钢与塑料连接接头的剪切力最强。
  • 图  1  两种材料样品和连接区域的尺寸

    Figure  1.  Dimensions of two materials and bonding areas

    图  2  激光扫描构形示意图

    Figure  2.  Schematic diagram of laser scanning and configuration

    图  3  阵列单元内激光扫描轨迹与光斑间距

    Figure  3.  Laser scanning track and spot distance in array cells

    图  4  压力测试装置

    Figure  4.  Pressure test device

    图  5  不锈钢加热200℃时,塑料连接界面的表面形貌。(a)连接前;(b)连接后

    Figure  5.  Surface morphologies of plastic connection interface when the stainless steel is heated to 200℃.(a) Before connection; (b)after connection

    图  6  在微孔直径为0.2 mm、0.5 mm和0.7 mm时,加热温度对不锈钢与塑料连接强度的影响

    Figure  6.  Effect of heating temperature on connection strength between the stainless steel and the plastic when the diameter of the micropores is 0.2, 0.5 and 0.7 mm

    图  7  不同温度下,微孔直径为0.7 mm的不锈钢与塑料的连接截面照片。(a)300℃、(b)400℃、(c)500℃、(d)600℃

    Figure  7.  Photos of connection section of stainless steel and plastic with micropore diameter of 0.7 mm at different temperatures. (a) 300℃; (b) 400℃; (c) 500℃; (d) 600℃

    图  8  在微孔直径为0.2 mm、0.5 mm和0.7 mm的条件下,连接压力对不锈钢与塑料连接强度的影响

    Figure  8.  Effect of the connection pressure on the connection strength between the stainless steel and the plastic when the diameter of the micropore is 0.2, 0.5 and 0.7 mm

    图  9  微孔直径为0.5 mm时,不同连接压力下的不锈钢与塑料的连接截面照片。(a)45 kN、(b)55 kN、(c)65 kN、(d)75 kN、(e)85 kN

    Figure  9.  Photographs of connection section of plastic and stainless steel with micropore diameter of 0.5 mm under different connection pressures. (a) 45 kN; (b) 55 kN; (c) 65 kN; (d) 75 kN; (e) 85 kN

    图  10  微孔直径为0.5 mm,不同毛刺占比时的3D形貌照片。(a)Tm=4.62%;(b)Tm=14.82%;(c)Tm=19.44%

    Figure  10.  3D morphology photos of micropore with diameter of 0.5 mm at different Tm.(a)Tm=4.62%;(b)Tm=14.82%;(c)Tm=19.44%

    图  11  激光标刻次数与某一范围内毛刺个数占比关系柱形图

    Figure  11.  Column diagram showing the relationship between laser marking number and the proportion of burrs in a certain range

    图  12  激光标刻次数与Tm和与剪切力的关系

    Figure  12.  The relationship between Tm, shear force and laser marking time

    图  13  (a) 连接界面处和(b)塑料处的断裂位置和形貌

    Figure  13.  Fracture locations and morphologies of (a)bonding interface and (b)inside plastics

    图  14  Tm=16.89%时,不锈钢连接后表面微孔的3D形貌

    Figure  14.  3D morphology of surface micropores after bonding stainless steel when Tm=16.89%

    图  15  微孔直径为0.5 mm的不锈刚的3D形貌照片。(a)C=54.0%、(b)C=19.3%

    Figure  15.  3D morphologies of stainless steel surface with micropore diameter of 0.5mm. (a) C=54.0%; (b) C=19.3%

    图  16  覆盖率对不锈钢与塑料连接强度的关系曲线

    Figure  16.  Relationship curve of coverage rate vs connection strength

    表  1  不锈钢和PP+EDPM-T20的物理性能和力学性能

    Table  1.   Physical and mechanical properties of stainless steel and PP+EDPM-T20

    材料 密度/
    (g·cm-3)
    熔点/
    (℃)
    热降解温度/(℃) 抗拉强度/
    MPa
    不锈钢 7.93 1 398~1 454 - ≥520
    PP+EDPM-T20 1.05±0.02 160 450 ≥20
    下载: 导出CSV

    表  2  激光器的参数

    Table  2.   Parameters of the laser equipment

    参数 数值 参数 数值
    波长/nm 1 064 平均功率/W 20
    脉宽/μs 100 频率/KHz 25
    脉冲能量/mJ 1 光斑/mm φ0.05
    功率密度/mW·cm-2 510 范围/mm 100×100
    下载: 导出CSV

    表  3  不同温度下连接接头的拉伸强度

    Table  3.   Tension strength of joint at different temperatures

    序号 温度/(℃) 断裂位置 剪切力/N
    1 200 连接失败 0
    2 300 连接界面 602
    3 400 连接界面 705
    4 500 连接界面 673
    5 600 连接界面 639
    下载: 导出CSV
  • [1] 益小苏, 张明, 安学锋, 等.先进航空树脂基复合材料研究与应用进展[J].工程塑料应用, 2009, 37(10):72-76. doi: 10.3969/j.issn.1001-3539.2009.10.019

    YI X S, ZHANG M, AN X F, et al.. Development and application of advanced aeronautical polymer matrix composites[J]. Engineering Plastics Application, 2009, 37(10):72-76. (in Chinese) doi: 10.3969/j.issn.1001-3539.2009.10.019
    [2] KORSON C, STRATTON D. An integrated automotive roof module concept: plastic-metal hybrid and polyurethane composite technology[C]. Proceedings of the 5th SPE Annual Automotive Composites Conference, Bayer Material Science LLC, 2005: 14-15.
    [3] LEI D Q, WANG ZH F, LI J, et al.. Experimental study of glass to metal seals for parabolic trough receivers[J]. Renewable Energy, 2012, 48:85-91. doi: 10.1016/j.renene.2012.04.033
    [4] ZHAO W P, BARSUN S, RAMANI K, et al.. Development of PMMA-precoating metal prostheses via injection molding:residual stresses[J]. Journal of Biomedical Materials Research, 2001, 58(4):456-462. doi: 10.1002/jbm.1041
    [5] 徐飞, 田兴友, 王化.环氧SEBS胶黏剂的制备及性能研究[J].塑料科技, 2015, 43(5):56-60. http://d.old.wanfangdata.com.cn/Periodical/slkj201505008

    XU F, TIAN X Y, WANG H. Study on properties of SEBS epoxy adhesive and its preparation[J]. Plastics Science and Technology, 2015, 43(5):56-60. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/slkj201505008
    [6] 丁文有, 何晓聪, 刘佳沐, 等.碳纤维增强聚合物-AA5052铝合金三层板自冲铆接性能[J].科学技术与工程, 2018, 18(25):143-147. doi: 10.3969/j.issn.1671-1815.2018.25.021

    DING W Y, HE X C, LIU J M, et al.. Performance of self-pierce riveting based on carbon fiber reinforced polymer-AA5052 aluminum alloy three-layer sheets[J]. Science Technology and Engineering, 2018, 18(25):143-147. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.25.021
    [7] LI G, CHEN J H, YANISHEVSKY M, et al.. Static strength of a composite butt joint configuration with different attachments[J].Composite Structures, 2012, 94(5):1736-1744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54958defd04bc75fea17444a37d20784
    [8] 袁辉, 刘鹏飞, 赵启林, 等.胶-螺混合连接承载力的参数影响研究[J].玻璃钢/复合材料, 2013(3):66-71. doi: 10.3969/j.issn.1003-0999.2013.03.015

    YUAN H, LIU P F, ZHAO Q L, et al.. Research on the influence factors of the bearing capacity for bonded-bolted hybrid joints[J]. Fiber Reinforced Plastics/Composites, 2013(3):66-71. (in Chinese) doi: 10.3969/j.issn.1003-0999.2013.03.015
    [9] 马毓, 江克斌, 赵启林.制作工艺对复合材料胶-螺混合连接接头传力机理及承载力的影响分析[J].机械强度, 2011, 33(1):99-105. http://d.old.wanfangdata.com.cn/Periodical/jxqd201101020

    MA Y, JIANG K B, ZHAO Q L. Analysis of the impact of the fabrication technical process on the load transfer mechanism and carrying capacity of the bonded-bolted hybrid composite joints[J]. Journal of Mechanical Strength, 2011, 33(1):99-105. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxqd201101020
    [10] YEH R Y, HSU R Q. Application of porous oxide layer in plastic/metal direct adhesion by injection molding[J]. Journal of Adhesion Science and Technology, 2015, 29(15):1617-1627. doi: 10.1080/01694243.2015.1038955
    [11] 贾振元, 赵凯, 刘巍, 等.工程塑料表面金属覆层的激光定域精细去除[J].光学 精密工程, 2016, 24(1):94-101. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201601013

    JIA ZH Y, ZHAO K, LIU W, et al.. Localized and precision removal of metal coating on engineering plastics using NC laser milling[J]. Opt. Precision Eng., 2016, 24(1):94-101. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201601013
    [12] HALDAR S, SAIN T, GHOSH S. A novel high symmetry interlocking micro-architecture design for polymer composites with improved mechanical properties[J]. International Journal of Solids and Structures, 2017, 124:161-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=39fcbc7dabbf25e978598e9b75a889c4
    [13] MANDOLFINO C, LERTORA E, GAMBARO C. Effect of surface pretreatment on the performance of adhesive-bonded joints[J]. Key Engineering Materials, 2013, 554-557:996-1006. doi: 10.4028/www.scientific.net/KEM.554-557.996
    [14] BAGHERI S, GUAGLIANO M. Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys[J]. Surface Engineering, 2019, 25(1):3-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d9ae146ed7ecfae346c34625830523a2
    [15] ANNERFORS C O, PETERSSON S. Nano molding technology on cosmetic aluminum parts in mobile phones[R]. Sweden: School of Mechanical Engineering Lund University, 2007.
    [16] 张朝阳, 李中洋, 王耀民, 等.激光冲击效应下的力学电化学微细刻蚀加工[J].光学 精密工程, 2012, 20(6):1310-1315. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201206022

    ZHANG CH Y, LI ZH Y, WANG Y M, et al.. Mechanical-electrochemical micro-etching under laser shock effect[J]. Opt. Precision Eng., 2012, 20(6):1310-1315. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201206022
    [17] VILHENA L M, SEDLAEK M, PODGORNIK B, et al.. Surface texturing by pulsed Nd:YAG laser[J]. Tribology International, 2009, 42(10):1496-1504. doi: 10.1016/j.triboint.2009.06.003
    [18] 程柏, 韩冰, 谷立山, 等.纳结构的连续激光复合微纳探针刻划加工[J].光学 精密工程, 2015, 23(7):2043-2050. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201507030

    CHENG B, HAN B, GU L SH, et al.. Nanostructure machining by AFM probe combined with continuous laser[J]. Opt. Precision Eng., 2015, 23(7):2043-2050. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201507030
    [19] ZHANG X M, YUE T M, MAN H C. Enhancement of ceramic-to-metal adhesive bonding by excimer laser surface treatment[J]. Materials Letters, 1997, 30(5-6):327-332. doi: 10.1016/S0167-577X(96)00229-7
    [20] BABURAJ E G, STARIKOV D, EVANS J, et al.. Enhancement of adhesive joint strength by laser surface modification[J]. International Journal of Adhesion and Adhesives, 2007, 27(4):268-276. doi: 10.1016/j.ijadhadh.2006.05.004
    [21] ROESNER A, SCHEIK S, OLOWINSKY A, et al.. Laser assisted joining of plastic metal hybrids[J]. Physics Procedia, 2011, 12:370-377. doi: 10.1016/j.phpro.2011.03.146
    [22] XU F, LIU SH Y, FAN H Q, et al.. Enhancement of the adhesion strength at the metal-plastic interface via the structures formed by laser scanning[J]. Optics & Laser Technology, 2019, 111:635-643. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b8049925a95b1a0cd8a357a781211b9
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  1000
  • HTML全文浏览量:  353
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2020-02-07
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回