留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆涡旋光束在海洋湍流中的传输特性

卢腾飞 张凯宁 吴志军 刘永欣

卢腾飞, 张凯宁, 吴志军, 刘永欣. 椭圆涡旋光束在海洋湍流中的传输特性[J]. 中国光学(中英文), 2020, 13(2): 323-332. doi: 10.3788/CO.20201302.0323
引用本文: 卢腾飞, 张凯宁, 吴志军, 刘永欣. 椭圆涡旋光束在海洋湍流中的传输特性[J]. 中国光学(中英文), 2020, 13(2): 323-332. doi: 10.3788/CO.20201302.0323
LU Teng-fei, ZHANG Kai-ning, WU Zhi-jun, LIU Yong-xin. Propagation properties of elliptical vortex beams in turbulent ocean[J]. Chinese Optics, 2020, 13(2): 323-332. doi: 10.3788/CO.20201302.0323
Citation: LU Teng-fei, ZHANG Kai-ning, WU Zhi-jun, LIU Yong-xin. Propagation properties of elliptical vortex beams in turbulent ocean[J]. Chinese Optics, 2020, 13(2): 323-332. doi: 10.3788/CO.20201302.0323

椭圆涡旋光束在海洋湍流中的传输特性

doi: 10.3788/CO.20201302.0323
基金项目: 

国家自然科学基金资助项目 61505059

国家自然科学基金资助项目 61575070

国家自然科学基金资助项目 61275203

华侨大学研究生科研创新基金资助项目 

详细信息
    作者简介:

    卢腾飞(1994—), 男, 河南周口人, 硕士研究生, 2018年于沈阳理工大学获得学士学位, 主要研究方向为激光传输与变换。Email:1805440176@qq.com

    刘永欣(1979—), 女, 河北定州人, 博士, 副教授, 2012年于四川大学获得理学博士学位, 主要研究方向为激光传输与变换。Email:yongxin@hqu.edu.cn

  • 中图分类号: O436

Propagation properties of elliptical vortex beams in turbulent ocean

Funds: 

National Natural Science Foundation of China 61505059

National Natural Science Foundation of China 61575070

National Natural Science Foundation of China 61275203

Postgraduates′ Innovative Fund in Scientific Research of Huaqiao University 

More Information
  • 摘要: 本文采用分步相位屏方法来仿真椭圆涡旋光束在海洋中的实际传输情况,并对椭圆涡旋光束在海洋湍流中的传输光强和闪烁因子进行了仿真。研究发现,椭圆涡旋光束在海洋传输过程中,光斑会发生明显的旋转,同时光斑会产生暗核且暗核个数与光束的拓扑荷数相等。一个拓扑荷数为m的相位奇点会分裂成m个拓扑荷数为1的相位奇点,并且海洋湍流越强,光斑受到的干扰越严重。研究还发现,在较弱的海洋湍流中,随着传输距离的增加,椭圆涡旋光束的闪烁因子会低于高斯光束和涡旋光束的闪烁因子,而且在远距离处拓扑荷数越大闪烁因子降低越明显,同时也发现,传播一段距离后涡旋光束的闪烁因子会低于高斯光束的闪烁因子。在较强湍流中,椭圆涡旋光束的闪烁因子会交叠在一起。对于不同强度的海洋湍流,随着均方温度耗散率的增大,椭圆涡旋光束的轴上点闪烁因子也增大。在同一传输距离处,束腰宽度越小的椭圆涡旋光束闪烁因子越小。

     

  • 图 1  m=2时不同椭球率的椭圆涡旋光束的光强分布和相应的相位分布,其中(a)、(b)、(c)的椭球率分别为1、2、5/6,(d)、(e)、(f)为其相应的相位分布

    Figure 1.  Intensity distributions and phase distributions of elliptical vortex beams with m=2 under different ellipsoid ratios, where (a), (b) and (c) have ellipsoid ratios of 1, 2 and 5/6 respectively, and (d), (e) and (f) are corresponding phase distributions

    图 2  拓扑荷数m=2(a)~(d)及m=3(e)~(h)的椭圆涡旋光束在较弱的海洋湍流中传输到不同距离处的光强分布

    Figure 2.  Intensity distributions of elliptical vortex beams with m=2(a)~(d) and m=3(e)~(h) propagating in weaker oceanic turbulence at different propagation distances

    图 3  拓扑荷数m=2(a)~(d)及m=3(e)~(h)的椭圆涡旋光束在较弱的海洋湍流中传输到不同距离处的相位分布

    Figure 3.  Phase distributions of elliptical vortex beams with m=2(a)~(d) and m=3(e)~(h) propagating in weaker oceanic turbulence at different propagation distance

    图 4  拓扑荷数m=2(a)~(c)及m=3(d)~(f)的椭圆涡旋光束在较强的海洋湍流中传输到不同距离处的光强分布

    Figure 4.  Intensity distributions of elliptical vortex beams with m=2(a)~(c) and m=3(d)~(f) propagating in stronger oceanic turbulence at different propagation distances

    图 5  拓扑荷数m=2(a)~(c)及m=3(d)~(f)的椭圆涡旋光束在较强的海洋湍流中传输到不同距离处的相位分布

    Figure 5.  Phase distributions of elliptical vortex beams with m=2(a)~(c) and m=3(d)~(f) propagating in stronger oceanic turbulence at different propagation distances

    图 6  高斯光束、涡旋光束和椭圆涡旋光束在较弱的海洋湍流中传输的轴上点的闪烁因子

    Figure 6.  On-axis scintillation indices of Gaussian beams、vortex beams and elliptical vortex beams propagating in weaker oceanic turbulence

    图 7  不同拓扑荷数的椭圆涡旋光束在较弱海洋湍流中传输的轴上点的闪烁因子

    Figure 7.  On-axis scintillation indices of elliptical vortex beams with different topological charges propagating in weaker oceanic turbulence

    图 8  不同拓扑荷数的椭圆涡旋光束在较强的海洋湍流中传输的轴上点的闪烁因子

    Figure 8.  On-axis scintillation indices of elliptical vortex beams with different topological charges propagating in stronger oceanic turbulence

    图 9  不同束腰宽度下的m=2的椭圆涡旋光束在较弱海洋湍流中传输的轴上点的闪烁因子

    Figure 9.  On-axis scintillation indices of elliptical vortex beams with m=2 at different waist widthes propagating in weaker oceanic turbulence

    图 10  m=2的椭圆涡旋光束在不同强度的海洋湍流中传输的轴上点的闪烁因子

    Figure 10.  On-axis scintillation indices of elliptical vortex beams with m=2 propagating in oceanic turbulence with different intensities

  • [1] YI X, LI Z, LIU Z J. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence[J]. Applied Optics, 2015, 54(6):1273-1278. doi: 10.1364/AO.54.001273
    [2] WOJTANOWSKI J, MIERCZYK Z, ZYGMUNT M. Laser remote sensing of underwater objects[J]. Proceedings of SPIE, 2008, 7105:71050F. http://cn.bing.com/academic/profile?id=9626799cad6ccad8b54883a9c8d49e1b&encoded=0&v=paper_preview&mkt=zh-cn
    [3] NIKISHOV V V, NIKISHOV V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1):82-98. doi: 10.1615/InterJFluidMechRes.v27.i1.70
    [4] 尹霄丽, 郭翊麟, 闫浩, 等.汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析[J].物理学报, 2018, 67(11):114201. doi: 10.7498/aps.67.20180155

    YIN X L, GUO Y L, YAN H, et al..Analysis of orbital angular momentum spectra of Hankel-Bessel beams in channels with oceanic turbulence[J]. Acta Physica Sinica, 2018, 67(11):114201. (in Chinese) doi: 10.7498/aps.67.20180155
    [5] FU W Y, ZHANG H M. Propagation properties of partially coherent radially polarized doughnut beam in turbulent ocean[J]. Optics Communications, 2013, 304:11-18. doi: 10.1016/j.optcom.2013.03.029
    [6] CHENG M J, GUO L X, LI J T, et al..Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean[J]. Applied Optics, 2016, 55(17):4642-4648. doi: 10.1364/AO.55.004642
    [7] CHEN X D, ZHAO D M. Propagation properties of electromagnetic rectangular multi-Gaussian Schell-model beams in oceanic turbulence[J]. Optics Communications, 2016, 372:137-143. doi: 10.1016/j.optcom.2016.03.082
    [8] LU CH Y, ZHAO D M. Propagation of electromagnetic multi-Gaussian Schell-model beams with astigmatic aberration in turbulent ocean[J]. Applied Optics, 2016, 55(29):8196-8200. doi: 10.1364/AO.55.008196
    [9] FARWELL N, KOROTKOVA O. Intensity and coherence properties of light in oceanic turbulence[J]. Optics Communications, 2012, 285(6):872-875. doi: 10.1016/j.optcom.2011.10.020
    [10] KOROTKOVA O, FARWELL N, SHCHEPAKINA E. Light scintillation in oceanic turbulence[J]. Waves in Random and Complex Media, 2012, 22(2):260-266. doi: 10.1080/17455030.2012.656731
    [11] 牛超君, 卢芳, 韩香娥.相位屏法模拟高斯阵列光束海洋湍流传输特性[J].光学学报, 2018, 38(6):0601004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201806004

    NIU CH J, LU F, HAN X E. Propagation properties of Gaussian array beams transmitted in oceanic turbulence simulated by phase screen method[J]. Acta Optica Sinica, 2018, 38(6):0601004. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201806004
    [12] 娄岩, 陈纯毅, 赵义武, 等.高斯涡旋光束在大气湍流传输中的特性研究[J].中国光学, 2017, 10(6):768-776. doi: 10.3788/CO.20171006.0768

    LOU Y, CHEN CH Y, ZHAO Y W, et al..Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6):768-776. (in Chinese) doi: 10.3788/CO.20171006.0768
    [13] 李波, 王挺峰, 王弟男, 等.激光大气传输湍流扰动仿真技术[J].中国光学, 2012, 5(3):289-295. doi: 10.3969/j.issn.2095-1531.2012.03.015

    LI B, WANG T F, WANG D N, et al..Simulation of laser beam propagation through turbulence[J]. Chinese Optics, 2012, 5(3):289-295. (in Chinese) doi: 10.3969/j.issn.2095-1531.2012.03.015
    [14] 赵云峰, 李夜金, 张寅, 等.海洋背景下运动目标的天基红外探测场景生成系统[J].光学 精密工程, 2017, 25(4):1019-1025. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201704025

    ZHAO Y F, LI Y J, ZHANG Y, et al..A space-based infrared detection scene generation system for moving objects with sea background[J]. Opt. Precision Eng., 2017, 25(4):1019-1025. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201704025
    [15] 刘超, 陈善球, 廖周, 等.自适应光学技术在通信波段对大气湍流的校正[J].光学 精密工程, 2014, 22(10):2605-2610. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201410004

    LIU CH, CHEN SH Q, LIAO ZH, et al..Correction of atmospheric turbulence by adaptive optics in waveband of free-space coherent laser communication[J]. Opt. Precision Eng., 2014, 22(10):2605-2610. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201410004
    [16] LIU X H, PU J X. Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence[J]. Optics Express, 2011, 19(27):26444-26450. doi: 10.1364/OE.19.026444
    [17] YE F, ZHANG J B, XIE J T, et al..Propagation properties of the rotating elliptical chirped Gaussian vortex beam in the oceanic turbulence[J]. Optics Communications, 2018, 426:456-462. doi: 10.1016/j.optcom.2018.05.077
    [18] ZHANG J B, XIE J T, YE F, et al..Effects of the turbulent atmosphere and the oceanic turbulence on the propagation of a rotating elliptical Gaussian beam[J]. Applied Physics B, 2018, 124(8):168. doi: 10.1007/s00340-018-7038-2
    [19] 刘永欣, 陈子阳, 蒲继雄.随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性[J].物理学报, 2017, 66(12):124205. doi: 10.7498/aps.66.124205

    LIU Y X, CHEN Z Y, PU J X. Propagation of stochastic electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence[J]. Acta Physica Sinica, 2017, 66(12):124205. (in Chinese) doi: 10.7498/aps.66.124205
    [20] XIAO X F, KOROTKOVA O, VOELZ D G. Laboratory investigation of the spectral exponent effect on scintillation in non-kolmogorov turbulence[C]. Proceedings of 2014 Imaging and Applied Optics, OSA, 2014: PM3E.3.
    [21] KOTLYAR V V, KHONINA S N, ALMAZOV A A, et al..Elliptic Laguerre-Gaussian beams[J]. Journal of the Optical Society of America A, 2006, 23(1):43-56. doi: 10.1364/JOSAA.23.000043
    [22] LIU Y X, ZHANG K N, CHEN Z Y, et al..Scintillation index of double vortex beams in turbulent atmosphere[J]. Optik, 2019, 181:571-574. doi: 10.1016/j.ijleo.2018.12.046
  • 加载中
图(10)
计量
  • 文章访问数:  1271
  • HTML全文浏览量:  591
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-10
  • 修回日期:  2019-07-19
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回