留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Far-field range fluorescence enhancement by a hybrid metal-dielectric structure

DONG Lin-xiu CHEN Zhi-hui YANG Yi-biao FEI Hong-ming LIU Xin

董林秀, 陈智辉, 杨毅彪, 费宏明, 刘欣. 金属-电介质复合结构实现荧光远场增强[J]. 中国光学, 2020, 13(2): 372-380. doi: 10.3788/CO.20201302.0372
引用本文: 董林秀, 陈智辉, 杨毅彪, 费宏明, 刘欣. 金属-电介质复合结构实现荧光远场增强[J]. 中国光学, 2020, 13(2): 372-380. doi: 10.3788/CO.20201302.0372
DONG Lin-xiu, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Far-field range fluorescence enhancement by a hybrid metal-dielectric structure[J]. Chinese Optics, 2020, 13(2): 372-380. doi: 10.3788/CO.20201302.0372
Citation: DONG Lin-xiu, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Far-field range fluorescence enhancement by a hybrid metal-dielectric structure[J]. Chinese Optics, 2020, 13(2): 372-380. doi: 10.3788/CO.20201302.0372

金属-电介质复合结构实现荧光远场增强

doi: 10.3788/CO.20201302.0372
基金项目: 

the National Natural Science Foundation of China 11674239

the National Natural Science Foundation of China 61575139

the National Natural Science Foundation of China 61575138

详细信息
  • 中图分类号: O436.1

Far-field range fluorescence enhancement by a hybrid metal-dielectric structure

Funds: 

the National Natural Science Foundation of China 11674239

the National Natural Science Foundation of China 61575139

the National Natural Science Foundation of China 61575138

More Information
    Author Bio:

    Lin-xiu Dong(1992—), Master Degree Candidate, Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology.Her research interests are on micro/nano-photonics.E-mail:1355175076@qq.com

    Zhi-hui Chen(1984—), PhD, professor, Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology.His research interests are on micro/nano-photonics.E-mail:huixu@126.com

    Corresponding author: Zhi-hui Chen, E-mail:huixu@126.com
  • 摘要: 本文提出一种大尺度的金属-电介质复合微纳结构(银-硅结构),用于提高荧光生物检测的灵敏度及解决荧光物质距离结构远场范围时荧光增强的近场局限。这种大尺度的金属-电介质复合微纳结构与之前的金属-电介质复合微纳结构不同,其通过光的散射和干涉实现了荧光物质距离结构远场范围时的荧光增强。在本文中,通过采用时域有限差分法,主要从荧光激发和荧光发射两个过程研究银-硅结构。结果表明,在激发过程中,银-硅结构的荧光强度高于玻璃结构且位于银-硅结构两柱之间的狭缝中的电场分布比金属结构(银结构)更均匀,因此在银-硅结构中可以实现荧光增强,而且分子运动行为的检测更准确。在发射过程中,当荧光纳米粒子距离结构远场范围内时,与玻璃相比,银-硅结构可以实现更好的荧光增强效果。利用银-硅结构实现荧光增强的机理是光的散射和干涉,荧光被银膜向上散射,同时,结构两侧的银/硅柱也散射一部分荧光,荧光相互干涉传播至远场实现荧光增强。此外,银-硅结构易于制备和集成。因此,其可以很好地应用于生物传感领域。
  • Figure  1.  Schematic illustration of five structures. (a)Bare glass structure; (b)Si structure; (c)Ag structure; (d) Si-Ag structure; (e)Ag-Si structure

    Figure  2.  (a) Total fluorescence intensity of all six structures(the five structures in Fig. 1 and a silver film structure); (b) total electric field distributions of the five structures; (c) far-field angular distributions for the five structures at a wavelength of 610 nm; the QD 0.5 μm away from the Ag film and 1.0 μm away from the pillars

    Figure  3.  (a) The different polarizations for the Ag-Si structure; (b) the electric field distributions of the Ag-Si structure atdifferent polarizations at a wavelength of 610 nm; the QD is 0.5 μm away from the Ag film and 1.0 μm away from the pillars.

    Figure  4.  The fluorescence intensity of QD in the Ag-Si structure with different slit widths; the QD is 0.5 μm away from the Ag film and 1.0 μm away from the pillars.

    Figure  5.  The fluorescence intensity of the QD in the structure with different Ag/Si heights; QD is 0.5 μm away from the Ag film and 1.0 μm away from the pillars.

    Figure  6.  The intensity of the QD in different positions in the slit

    Figure  7.  (a) The fluorescence intensity of the QD in the Ag-Si structure with different slit widths at the central wavelength; (b)the fluorescence intensity of the QD in the structure with different Ag/Si heights at the central wavelength; (c)the intensity of the QD in different positions within the slit at the central wavelength; one point is marked by a circle to indicate the fluorescence intensity of the QD in a bare glass structure

    Figure  8.  The electric field distributions of Ag, Ag-Si, Si-Ag, SiO2 structures in the excitation process; the wavelength is 380 nm.

  • [1] 李红博, 尹坤.基于量子点的荧光型太阳能聚光器[J].中国光学, 2018, 10(5):555-567. doi: 10.3788/CO.20171005.0555

    LI H B, YIN K. Quantum dots based luminescent solar concentrator[J]. Chinese Optics, 2018, 10(5):555-567. (in Chinese) doi: 10.3788/CO.20171005.0555
    [2] 安娜, 卢睿, 马昊玥, 等. CdSe/CdS核壳量子点复合材料合成及其在白光发光二极管中的应用[J].发光学报, 2017, 38(8):1003-1009. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201708003

    AN N, LU R, MA H Y, et al.. Synthesis of CdSe/CdS core/shell quantum dots luminescent microspheres and their application for WLEDs[J]. Chinese Journal of Luminescence, 2017, 38(8):1003-1009. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201708003
    [3] GUZATOV D V, VASCHENKO S V, STANKEVICH V V, et al..Plasmonic enhancement of molecular fluorescence near silver nanoparticles:theory, modeling, and experiment[J]. The Journal of Physical Chemistry C, 2012, 116(19):10723-10733. doi: 10.1021/jp301598w
    [4] TOBIAS AK, JONES M. Metal-enhanced fluorescence from quantum dot-coupled gold nanoparticles[J]. The Journal of Physical Chemistry C, 2019, 123(2):1389-1397. doi: 10.1021/acs.jpcc.8b09108
    [5] HOANG T B, AKSELROD G M, ARGYROPOULOS C, et al..Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 2015, 6:7788. doi: 10.1038/ncomms8788
    [6] SHEN H M, LU G W, ZHANG T Y, et al..Molecule fluorescence modified by a slit-based nanoantenna with dual gratings[J]. Journal of the Optical Society of America B, 2013, 30(9):2420-2426. doi: 10.1364/JOSAB.30.002420
    [7] ZHANG J, FU Y, CHOWDHURY M H, et al..Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer:coupling effect between metal particles[J]. Nano Letters, 2007, 7(7):2101-2107. doi: 10.1021/nl071084d
    [8] JIANG Y, WANG H Y, WANG H, et al..Surface plasmon enhanced fluorescence of dye molecules on metal grating films[J]. The Journal of Physical Chemistry C, 2011, 115(25):12636-12642. doi: 10.1021/jp203530e
    [9] KINKHABWALA A, YU Z F, FAN SH H, et al..Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 2009, 3(11):654-657. doi: 10.1038/nphoton.2009.187
    [10] LU G W, XU J N, WEN T, et al..Hybrid metal-dielectric nano-aperture antenna for surface enhanced fluorescence[J]. Materials, 2018, 11(8):1435. doi: 10.3390/ma11081435
    [11] NGO Q M, HO Y L D, PUGH J R, et al..Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays[J]. Current Applied Physics, 2018, 18(7):793-798. doi: 10.1016/j.cap.2018.04.007
    [12] RAY K, BADUGU R, SZMACINSKI H, et al..Several hundred-fold enhanced fluorescence from single fluorophores assembled on silver nanoparticle-dielectric-metal substrate[J]. Chemical Communications, 2015, 51(81):15023-15026. doi: 10.1039/C5CC03581C
    [13] SUN S, LI R, LI M, et al..Hybrid mushroom nanoantenna for fluorescence enhancement by matching the stokes shift of the emitter[J]. The Journal of Physical Chemistry C, 2018, 122(26):14771-14780. doi: 10.1021/acs.jpcc.8b01978
    [14] LAKOWICZ J R, RAY K, CHOWDHURY M, et al..Plasmon-controlled fluorescence:a new paradigm in fluorescence spectroscopy[J]. Analyst, 2008, 133(10):1308-1346. doi: 10.1039/b802918k
    [15] SUN S, LI M, DU Q G, et al..Metal-dielectric hybrid dimer nanoantenna:coupling between surface plasmons and dielectric resonances for fluorescence enhancement[J]. The Journal of Physical Chemistry C, 2017, 121(23):12871-12884. doi: 10.1021/acs.jpcc.7b02593
    [16] DUTTA CHOUDHURY S, BADUGU R, NOWACZYK K, et al..Tuning fluorescence direction with plasmonic metal-dielectric-metal substrates[J]. The Journal of Physical Chemistry Letters, 2013, 4(1):227-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=333918e662e61172f12c612b8037afdb
    [17] BADUGU R, SZMACINSKI H, RAY K, et al..Metal-dielectric waveguides for high-efficiency coupled emission[J]. ACS Photonics, 2015, 2(7):810-815. doi: 10.1021/acsphotonics.5b00219
    [18] BOLIN F P, PREUSS L E, TAYLOR R C, et al..Refractive index of some mammalian tissues using a fiber optic cladding method[J]. Applied Optics, 1989, 28(12):2297-2303. doi: 10.1364/AO.28.002297
    [19] CHOWDHURY M H, RAY K, GRAY S K, et al..Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules[J]. Analytical Chemistry, 2009, 81(4):1397-1403. doi: 10.1021/ac802118s
    [20] CHEN ZH H, LIANG L, WANG Y, et al..Spatial remote luminescence enhancement by a half-cylindrical Au groove[J]. Journal of Materials Chemistry C, 2016, 4(47):11321-11327. doi: 10.1039/C6TC04074H
    [21] CHEN ZH H, SHI H, WANG Y, et al..Sharp convex gold grooves for fluorescence enhancement in micro/nano fluidic biosensing[J]. Journal of Materials Chemistry B, 2017, 5(44):8839-8844. doi: 10.1039/C7TB02422C
    [22] LIU F F, YU Y, LIN B X, et al..Visualization of hormone binding proteins in vivo based on Mn-doped CdTeQDs[J]. SpectrochimicaActa Part A:Molecular and Biomolecular Spectroscopy, 2014, 131:9-16. doi: 10.1016/j.saa.2014.04.066
    [23] WRENGER J P. Numerical reflection from FDTD-PMLs:a comparison of the split PML with the unsplit and CFS PMLs[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(3):258-265. doi: 10.1109/8.999615
  • 加载中
图(8)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  414
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-10
  • 修回日期:  2019-05-17
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回