| Citation: | LI Can, REN Bo, ZHANG Jia-yi, WANG Tao, TANG Zhen-qiang, HE Zhi-wen, ZHOU Yi, LENG Jin-yong, ZHOU Pu. Pulse compression techniques in ultrafast fiber laser coherent beam combination[J]. Chinese Optics. doi: 10.37188/CO.2025-0100 |
In recent years, ultrafast fiber laser coherent beam combination (CBC) has developed rapidly, becoming an important technical means for enhancing the average power of ultrafast and ultra-intense lasers. However, due to factors such as spectral gain narrowing in single-channel fiber amplifiers and high-order dispersion mismatch, the output pulse width of high-power ultrafast fiber laser CBC systems is significantly wider compared to that of bulk solid-state laser systems, severely limiting its peak power enhancement. From the perspective of pulse compression in ultrafast fiber laser coherent combining, this review systematically analyzes the following three aspects: pulse shaping technique based on fiber chirped pulse amplification, combining technique based on fiber nonlinear spectral broadening, and coherent spectral combining technique based on partial spectral interference. Additionally, a brief conclusion and outlook on the future development of ultra-short pulse fiber laser CBC is given at the end.
| [1] |
刘军, 曾志男, 梁晓燕, 等. 超快超强激光及其科学应用发展趋势研究[J]. 中国工程科学, 2020, 22(3): 42-48. doi: 10.15302/J-SSCAE-2020.03.007
LIU J, ZENG ZH N, LIANG X Y, et al. Development trend of ultrafast and ultraintense lasers and their scientific application[J]. Strategic Study of CAE, 2020, 22(3): 42-48. (in Chinese). doi: 10.15302/J-SSCAE-2020.03.007
|
| [2] |
MOUROU G. Nobel Lecture: extreme light physics and application[J]. Reviews of Modern Physics, 2019, 91: 030501. doi: 10.1103/RevModPhys.91.030501
|
| [3] |
DANSON C N, HAEFNER C, BROMAGE J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
|
| [4] |
LI Y T, CHEN L M, CHEN M, et al. High-intensity lasers and research activities in China[J]. High Power Laser Science and Engineering, 2025, 13: e12. doi: 10.1017/hpl.2024.69
|
| [5] |
LI ZH Y, LENG Y X, LI R X. Further development of the short-pulse petawatt laser: trends, technologies, and bottlenecks[J]. Laser & Photonics Reviews, 2023, 17(3): 2300062. doi: 10.1002/lpor.202300062
|
| [6] |
MOSER M. Checking in with the brightest light initiative[EB/OL]. [2019-09-17]. https://www.optica-opn.org/home/newsroom/2019/september/checking_in_with_the_brightest_light_initiative. (查阅网上资料,未找到本条文献更新日期信息,请确认).
|
| [7] |
KLENKE A, MÜLLER M, STARK H, et al. Coherent beam combination of ultrafast fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 0902709.
|
| [8] |
王井上, 张瑶, 王军利, 等. 飞秒光纤激光相干合成技术最新进展[J]. 物理学报, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
WANG J SH, ZHANG Y, WANG J L, et al. Recent progress of coherent combining technology in femtosecond fiber lasers[J]. Acta Physica Sinica, 2021, 70(3): 034206. (in Chinese). doi: 10.7498/aps.70.20201683
|
| [9] |
李灿, 张嘉怡, 任博, 等. 超快超强激光与光纤激光相干合成技术的融合发展(特邀)[J]. 中国激光, 2024, 51(19): 1901006. doi: 10.3788/CJL240967
LI C, ZHANG J Y, REN B, et al. Integrated development of ultrafast ultra‐intense laser technology with fiber laser coherent beam combination technology (invited)[J]. Chinese Journal of Lasers, 2024, 51(19): 1901006. (in Chinese). doi: 10.3788/CJL240967
|
| [10] |
TAJIMA T, BROCKLESBY W, MOUROU G. ICAN: the next laser powerhouse[J]. Optics and Photonics News, 2013, 24(5): 36-43. doi: 10.1364/opn.24.5.000036
|
| [11] |
EIDAM T, KIENEL M, KLENKE A, et al. Divided-pulse amplification for terawatt-class fiber lasers[J]. The European Physical Journal Special Topics, 2015, 224(13): 2567-2571. doi: 10.1140/epjst/e2015-02566-8
|
| [12] |
BREITKOPF S, EIDAM T, KLENKE A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3(10): e211.
|
| [13] |
MÜLLER M, ALESHIRE C, KLENKE A, et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2020, 45(11): 3083-3086. doi: 10.1364/OL.392843
|
| [14] |
STARK H, BENNER M, BULDT J, et al. Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system[J]. Optics Letters, 2023, 48(11): 3007-3010. doi: 10.1364/OL.488617
|
| [15] |
YU H L, WANG X L, ZHANG H W, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm[J]. Journal of Lightwave Technology, 2016, 34(18): 4271-4277. doi: 10.1109/JLT.2016.2597862
|
| [16] |
BROCKLESBY W S. Progress in high average power ultrafast lasers[J]. The European Physical Journal Special Topics, 2015, 224(13): 2529-2543. doi: 10.1140/epjst/e2015-02562-0
|
| [17] |
HÄDRICH S, KIENEL M, MÜLLER M, et al. Energetic sub-2-cycle laser with 216 W average power[J]. Optics Letters, 2016, 41(18): 4332-4335. doi: 10.1364/OL.41.004332
|
| [18] |
NAGY T, HÄDRICH S, SIMON P, et al. Generation of three-cycle multi-millijoule laser pulses at 318 W average power[J]. Optica, 2019, 6(11): 1423-1424. doi: 10.1364/OPTICA.6.001423
|
| [19] |
GREBING C, MÜLLER M, BULDT J, et al. Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell[J]. Optics Letters, 2020, 45(22): 6250-6253. doi: 10.1364/OL.408998
|
| [20] |
WANG T, LI C, REN B, et al. High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier[J]. High Power Laser Science and Engineering, 2023, 11: e25. doi: 10.1017/hpl.2023.12
|
| [21] |
GAIDA C, GEBHARDT M, HEUERMANN T, et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power[J]. Optics Letters, 2018, 43(23): 5853-5856. doi: 10.1364/OL.43.005853
|
| [22] |
XIU H, FAN Y H, LIN W, et al. 1200-W all polarization-maintaining fiber GHz-femtosecond-pulse laser with good beam quality[J]. Optics Express, 2023, 31(25): 41940-41951. doi: 10.1364/OE.506631
|
| [23] |
闫东钰, 刘博文, 宋寰宇, 等. 高功率光纤飞秒激光放大器的研究现状与发展趋势[J]. 中国激光, 2019, 46(5): 0508012. doi: 10.3788/CJL201946.0508012
YAN D Y, LIU B W, SONG H Y, et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508012. (in Chinese). doi: 10.3788/CJL201946.0508012
|
| [24] |
WAN P, YANG L M, LIU J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859. doi: 10.1364/OE.21.029854
|
| [25] |
PEDERSEN M E V, JOHANSEN M M, OLESEN A S, et al. 175 W average power from a single-core rod fiber-based chirped-pulse-amplification system[J]. Optics Letters, 2022, 47(19): 5172-5175. doi: 10.1364/OL.471631
|
| [26] |
REN B, LI C, WANG T, et al. Thulium-doped all-PM fiber chirped pulse amplifier delivering 314 W average power[J]. High Power Laser Science and Engineering, 2023, 11: e73. doi: 10.1017/hpl.2023.68
|
| [27] |
MALEKMOHAMADI S, PERGAMENT M, KULCSAR G, et al. 44-fs, 1-MHz, 70-µJ Yb-doped fiber laser system for high harmonic generation[J]. Optics Express, 2024, 32(22): 39460-39468. doi: 10.1364/OE.538748
|
| [28] |
ČERNE L, ŠUŠNJAR P, PETKOVŠEK R. Compensation of optical nonlinearities in a femtosecond laser system in a broad operation regime[J]. Optics & Laser Technology, 2021, 135: 106706. doi: 10.1016/j.optlastec.2020.106706
|
| [29] |
LAMPEN J, TANI F, LI P, et al. Compact Yb fiber few-cycle pulse source based on precision pulse compression and shaping with an adaptive fiber Bragg grating[J]. Optics Express, 2023, 31(5): 8393-8399. doi: 10.1364/OE.483277
|
| [30] |
KLENKE A, BREITKOPF S, KIENEL M, et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13): 2283-2285. doi: 10.1364/OL.38.002283
|
| [31] |
LOZOVOY V, PASTIRK I, DANTUS M. Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation[J]. Optics Letters, 2004, 29(7): 775-777. doi: 10.1364/OL.29.000775
|
| [32] |
KLENKE A, HÄDRICH S, EIDAM T, et al. 22 GW peak-power fiber chirped-pulse-amplification system[J]. Optics Letters, 2014, 39(24): 6875-6878. doi: 10.1364/OL.39.006875
|
| [33] |
KIENEL M, MÜLLER M, KLENKE A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343-3346. doi: 10.1364/OL.41.003343
|
| [34] |
BECKER N C, HÄDRICH S, EIDAM T, et al. Adaptive pre-amplification pulse shaping in a high-power, coherently combined fiber laser system[J]. Optics Letters, 2017, 42(19): 3916-3919. doi: 10.1364/OL.42.003916
|
| [35] |
MÜLLER M, KLENKE A, STEINKOPFF A, et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 2018, 43(24): 6037-6040. doi: 10.1364/OL.43.006037
|
| [36] |
STARK H, BULDT J, MÜLLER M, et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 2019, 44(22): 5529-5532. doi: 10.1364/OL.44.005529
|
| [37] |
STARK H, BULDT J, MÜLLER M, et al. 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system[J]. Optics Letters, 2021, 46(5): 969-972.
|
| [38] |
HEILMANN A, LE DORTZ J, DANIAULT L, et al. Coherent beam combining of seven fiber chirped-pulse amplifiers using an interferometric phase measurement[J]. Optics Express, 2018, 26(24): 31542-31553. doi: 10.1364/OE.26.031542
|
| [39] |
FSAIFES I, DANIAULT L, BELLANGER S, et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 2020, 28(14): 20152-20161. doi: 10.1364/OE.394031
|
| [40] |
史卓, 常洪祥, 王栋梁, 等. 基于掺镱棒状光纤的高功率大能量四路相干合成飞秒激光系统[J]. 物理学报, 2025, 74(1): 014205. doi: 10.7498/aps.74.20241476
SHI ZH, CHANG H X, WANG D L, et al. High-power high-energy four-channel fiber coherent beam combined system[J]. Acta Physica Sinica, 2025, 74(1): 014205. (in Chinese). doi: 10.7498/aps.74.20241476
|
| [41] |
PENG SH X, WANG ZH H, HU F L, et al. 260 fs, 403 W coherently combined fiber laser with precise high-order dispersion management[J]. Frontiers of Optoelectronics, 2024, 17(1): 3. doi: 10.1007/s12200-024-00107-5
|
| [42] |
王鸣晓, 李平雪, 许杨涛, 等. 啁啾光纤布拉格光栅展宽器的设计与制作[J]. 光学学报, 2022, 42(7): 0706002. doi: 10.3788/AOS202242.0706002
WANG M X, LI P X, XU Y T, et al. Design and fabrication of chirped fiber Bragg grating stretchers[J]. Acta Optica Sinica, 2022, 42(7): 0706002. (in Chinese). doi: 10.3788/AOS202242.0706002
|
| [43] |
FRANKINAS S, MICHAILOVAS A, RUSTEIKA N, et al. Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration[J]. Proceedings of SPIE, 2016, 9730: 973017. doi: 10.1117/12.2214720
|
| [44] |
KUZNETSOVA L, WISE F W. Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification[J]. Optics Letters, 2007, 32(18): 2671-2673. doi: 10.1364/ol.32.002671
|
| [45] |
WISE F W, CHONG A, RENNINGER W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion[J]. Laser & Photonics Reviews, 2008, 2(1-2): 58-73. doi: 10.1002/lpor.200710041
|
| [46] |
LIU Y, LI W X, LUO D P, et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 2016, 24(10): 10939-10945. doi: 10.1364/OE.24.010939
|
| [47] |
ZHANG Y, WANG J SH, TENG H, et al. Double-pass pre-chirp managed amplification with high gain and high average power[J]. Optics Letters, 2021, 46(13): 3115-3118. doi: 10.1364/OL.428066
|
| [48] |
李灿, 任博, 郭琨, 等. 基于增益管理非线性的超快光纤激光放大研究进展(特邀)[J]. 红外与激光工程, 2025, 54(1): 20240438.
LI C, REN B, GUO K, et al. Research progress of ultrafast fiber laser amplifier based on gain managed nonlinearity (invited)[J]. Infrared and Laser Engineering, 2025, 54(1): 20240438. (in Chinese).
|
| [49] |
DANIAULT L, HANNA M, PAPADOPOULOS D N, et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining[J]. Optics Express, 2012, 20(19): 21627-21634. doi: 10.1364/OE.20.021627
|
| [50] |
KLENKE A, HÄDRICH S, KIENEL M, et al. Coherent combination of spectrally broadened femtosecond pulses for nonlinear compression[J]. Optics Letters, 2014, 39(12): 3520-3522. doi: 10.1364/OL.39.003520
|
| [51] |
GUO K, LI C, JIN K, et al. Monolithic gain-managed nonlinear fiber amplifier delivering 2.7-μJ ultrashort pulse with broad spectrum seeding[J]. Optics & Laser Technology, 2025, 192: 113610. doi: 10.1016/j.optlastec.2025.113610
|
| [52] |
ZHANG P L, ZHAO H, XIA T, et al. Generation of an 86-fs and a 10.2-uJ pulse from an all-fiber integrated GMN system with spectral shaping[J]. Optics Letters, 2025, 50(10): 3293-3296. doi: 10.1364/OL.554087
|
| [53] |
PENG CH, LIANG X Y, LIU R Q, et al. Two-beam coherent combining based on Ti: sapphire chirped-pulse amplification at the repetition of 1 Hz[J]. Optics Letters, 2019, 44(17): 4379-4382. doi: 10.1364/OL.44.004379
|
| [54] |
JANSONAS G, ERDMAN E C, NOVÁK J, et al. Coherent combining of broadband pulses after free space optical parametric amplification[J]. Optics Express, 2024, 32(22): 39623-39631. doi: 10.1364/OE.531920
|
| [55] |
ZHANG G L, LIANG X, XIE X L, et al. Theoretical analysis of the phase characteristics in few-cycle laser coherent beam combining[J]. Optics Express, 2024, 32(25): 45299-45314. doi: 10.1364/OE.543676
|
| [56] |
LUREAU F, MATRAS G, CHALUS O, et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability[J]. High Power Laser Science and Engineering, 2020, 8: e43. doi: 10.1017/hpl.2020.41
|
| [57] |
KHAZANOV E, SHAYKIN A, KOSTYUKOV I, et al. eXawatt center for extreme light studies[J]. High Power Laser Science and Engineering, 2023, 11: e78. doi: 10.1017/hpl.2023.69
|
| [58] |
ZHOU T, RUPPE J, ZHU CH, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442-7462. doi: 10.1364/OE.23.007442
|
| [59] |
BREITKOPF S, WUNDERLICH S, EIDAM T, et al. Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity[J]. Applied Physics B, 2016, 122(12): 297. doi: 10.1007/s00340-016-6574-x
|
| [60] |
张志刚. 相干脉冲堆积——超越啁啾脉冲放大的新技术[J]. 激光与光电子学进展, 2017, 54(12): 120001. doi: 10.3788/LOP54.120001
ZHANG ZH G. Coherent pulse stacking—an innovation beyond the chirped pulse amplification[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120001. (in Chinese). doi: 10.3788/LOP54.120001
|
| [61] |
RAINVILLE A, WHITTLESEY M, PASQUALE C, et al. Near-complete extraction of maximum stored energy from large-core fibers using coherent pulse stacking amplification of femtosecond pulses[J]. Optica, 2024, 11(11): 1540-1548. doi: 10.1364/OPTICA.533803
|
| [62] |
SIDORENKO P, FU W, WISE F. Nonlinear ultrafast fiber amplifiers beyond the gain-narrowing limit[J]. Optica, 2019, 6(10): 1328-1333. doi: 10.1364/OPTICA.6.001328
|
| [63] |
SIDORENKO P, WISE F. Generation of 1 μJ and 40 fs pulses from a large mode area gain-managed nonlinear amplifier[J]. Optics Letters, 2020, 45(14): 4084-4087. doi: 10.1364/OL.396683
|
| [64] |
REN B, LI C, WANG T, et al. Generation of ultrafast laser with 11 MW peak power from a gain-managed nonlinear tapered fiber amplifier[J]. Optics & Laser Technology, 2023, 160: 109081. doi: 10.1016/j.optlastec.2022.109081
|
| [65] |
MA J D, LIU H H, CHEN Y J, et al. Generation of 35 fs, 20 μJ, GHz pulse burst by hybrid fiber amplification technique[J]. Optics Express, 2023, 31(21): 34224-34231. doi: 10.1364/OE.503079
|
| [66] |
CHANG W Z, ZHOU T, SIIMAN L A, et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Optics Express, 2013, 21(3): 3897-3910. doi: 10.1364/OE.21.003897
|
| [67] |
GUICHARD F, HANNA M, LOMBARD L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Optics Letters, 2013, 38(24): 5430-5433. doi: 10.1364/OL.38.005430
|
| [68] |
GE A CH, LIU B W, CHEN W, et al. Generation of few-cycle laser pulses by coherent synthesis based on a femtosecond Yb-doped fiber laser amplification system[J]. Chinese Optics Letters, 2019, 17(4): 041403. doi: 10.3788/COL201917.041403
|
| [69] |
CHEN S Y, ZHOU T, DU Q, et al. Broadband spectral combining of three pulse-shaped fiber amplifiers with 42fs compressed pulse duration[J]. Optics Express, 2023, 31(8): 12717-12724. doi: 10.1364/OE.486884
|
| [70] |
SCHULZ W. Fiber lasers poised to advance berkeley lab’s development of practical laser-plasma accelerators[EB/OL]. (2021-12-06)[2021-12-06]. https://newscenter.lbl.gov/2021/12/06/fiber-lasers-poised-to-advance-berkeley-labs-development-of-practical-laser-plasma-accelerators/.
|
| [71] |
WILLIAMS C A. Spectrally combining lasers could unleash the potential of laser-plasma accelerators[EB/OL]. (2023-06-27)[2023-06-27]. https://atap.lbl.gov/news/spectrally-combining-lasers-could-unleash-the-potential-of-laser-plasma-accelerators/.
|