| Citation: | TIAN Xing, CAO Li-xia. Research on spatial resolution of a single light field camera based on forward ray tracing technique[J]. Chinese Optics. doi: 10.37188/CO.2025-0119 |
In the process of 3D scene reconstruction, the spatial resolution of the light field camera (LFC) affects the recoverable spatial details as well as the depth resolution, thereby influencing the accuracy of the 3D reconstruction. Therefore, calculating and analyzing the spatial resolution of the LFC is crucial for identifying the high and low resolution regions. In this paper, a calculation method for the spatial resolution of an LFC is explored based on the forward ray-tracing technique, which has the advantage of high accuracy. The spatial resolutions of LFC 1.0 and LFC 2.0 under different microlens array configurations are quantitatively calculated and compared. In addition, the effects of the inverse magnification (
| [1] |
ZHU X Y, WU ZH A, LI J, et al. A pre-recognition SART algorithm for the volumetric reconstruction of the light field PIV[J]. Optics and Lasers in Engineering, 2021, 143: 106625. doi: 10.1016/j.optlaseng.2021.106625
|
| [2] |
LYNCH K, FAHRINGER T, THUROW B. Three-dimensional particle image velocimetry using a plenoptic camera[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA, 2012: AIAA 2012-1056.
|
| [3] |
SHI SH X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. doi: 10.1016/j.flowmeasinst.2016.05.006
|
| [4] |
SHI SH X, DING J F, NEW T H, et al. Volumetric calibration enhancements for single-camera light-field PIV[J]. Experiments in Fluids, 2019, 60(1): 21. doi: 10.1007/s00348-018-2670-5
|
| [5] |
SHI SH X, DING J F, NEW T H. Dense ray tracing based reconstruction algorithm for light field PIV and comparative study with Tomo-PIV[C]//18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, 2016. (查阅网上资料, 未找到本条文献出版者信息, 请确认).
|
| [6] |
SHI SH X, DING J F, NEW T H, et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids, 2017, 58(7): 78. doi: 10.1007/s00348-017-2365-3
|
| [7] |
SHI SH X, WANG J H, DING J F, et al. Parametric study on light field volumetric particle image velocimetry[J]. Flow Measurement and Instrumentation, 2016, 49: 70-88. (查阅网上资料, 本条文献与第3条文献重复, 请核对).
|
| [8] |
SHI SH X, DING J F, ATKINSON C, et al. A detailed comparison of single-camera light-field PIV and tomographic PIV[J]. Experiments in Fluids, 2018, 59(3): 46. doi: 10.1007/s00348-018-2500-9
|
| [9] |
MEI D, DING J F, SHI SH X, et al. High resolution volumetric dual-camera light-field PIV[J]. Experiments in Fluids, 2019, 60(8): 132. doi: 10.1007/s00348-019-2781-7
|
| [10] |
ZHU X Y, HOSSAIN M M, LI J, et al. Weight coefficient calculation through equivalent ray tracing method for light field particle image velocimetry[J]. Measurement, 2022, 193: 110982. doi: 10.1016/j.measurement.2022.110982
|
| [11] |
CAO L X, ZHANG B, LI J, et al. Characteristics of tomographic reconstruction of light-field Tomo-PIV[J]. Optics Communications, 2019, 442: 132-147. doi: 10.1016/j.optcom.2019.03.026
|
| [12] |
ZHU X Y, ZHANG B, LI J, et al. Volumetric resolution of light field imaging and its effect on the reconstruction of light field PIV[J]. Optics Communications, 2020, 462: 125263. doi: 10.1016/j.optcom.2020.125263
|
| [13] |
ZHU X Y, WU ZH A, LI J, et al. A pre-recognition SART algorithm for the volumetric reconstruction of the light field PIV[J]. Optics and Lasers in Engineering, 2021, 143: 106625. (查阅网上资料, 本条文献与第1条文献重复, 请核对).
|
| [14] |
ZHU X Y, XU CH L, HOSSAIN M M, et al. Approach to select optimal cross-correlation parameters for light field particle image velocimetry[J]. Physics of Fluids, 2022, 34(7): 073601. doi: 10.1063/5.0098933
|
| [15] |
CAO L X, ZHANG B, HOSSAIN M M, et al. Tomographic reconstruction of light field PIV based on a backward ray-tracing technique[J]. Measurement Science and Technology, 2021, 32(4): 044007. doi: 10.1088/1361-6501/abd281
|
| [16] |
ZHU X Y, XU CH L, HOSSAIN M M, et al. Fast and accurate flow measurement through dual-camera light field particle image velocimetry and ordered-subset algorithm[J]. Physics of Fluids, 2023, 35(6): 063603. doi: 10.1063/5.0153135
|
| [17] |
FAHRINGER T W, THUROW B S. Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV[J]. Measurement Science and Technology, 2016, 27(9): 094005. doi: 10.1088/0957-0233/27/9/094005
|
| [18] |
SCARANO F. Tomographic PIV: principles and practice[J]. Measurement Science and Technology, 2013, 24(1): 012001. doi: 10.1088/0957-0233/24/1/012001
|
| [19] |
ZHAO ZH, YAO CH H, SHI SH X, et al. Resolution analysis on light-field particle image velocimetry[J]. Journal of the Optical Society of America A, 2023, 40(4): 729-740. doi: 10.1364/JOSAA.474866
|
| [20] |
DEEM E A, ZHANG Y, CATTAFESTA L N, et al. On the resolution of plenoptic PIV[J]. Measurement Science and Technology, 2016, 27(8): 084003. doi: 10.1088/0957-0233/27/8/084003
|
| [21] |
RUAN L Y, CHEN B, LI J ZH, et al. Learning to deblur using light field generated and real defocus images[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2022: 16283-16292.
|
| [22] |
ZHAO ZH, JI Y, HE Y L, et al. Binocular Scheimpflug light-field PIV[J]. Optics Communications, 2025, 574: 131176. doi: 10.1016/j.optcom.2024.131176
|
| [23] |
LIU Y D, ZHU M J, WANG T X, et al. Spatial resolution of light field sectioning pyrometry for flame temperature measurement[J]. Optics and Lasers in Engineering, 2021, 140: 106545. doi: 10.1016/j.optlaseng.2021.106545
|
| [24] |
LYU W Q, SHENG H, KE W, et al. Advances in light field spatial super-resolution: a comprehensive literature survey[J]. IEEE Access, 2025, 13: 18470-18497. doi: 10.1109/ACCESS.2025.3532610
|