留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双线阵测绘相机视轴抖动实时测量

翟国芳 于庆盛 王蕴龙 高卫军

翟国芳, 于庆盛, 王蕴龙, 高卫军. 双线阵测绘相机视轴抖动实时测量[J]. 中国光学(中英文), 2023, 16(4): 878-888. doi: 10.37188/CO-2022-0175
引用本文: 翟国芳, 于庆盛, 王蕴龙, 高卫军. 双线阵测绘相机视轴抖动实时测量[J]. 中国光学(中英文), 2023, 16(4): 878-888. doi: 10.37188/CO-2022-0175
ZHAI Guo-fang, YU Qing-sheng, WANG Yun-long, GAO Wei-jun. Real-time measurement for boresight vibration of dual line array surveying and mapping cameras[J]. Chinese Optics, 2023, 16(4): 878-888. doi: 10.37188/CO-2022-0175
Citation: ZHAI Guo-fang, YU Qing-sheng, WANG Yun-long, GAO Wei-jun. Real-time measurement for boresight vibration of dual line array surveying and mapping cameras[J]. Chinese Optics, 2023, 16(4): 878-888. doi: 10.37188/CO-2022-0175

双线阵测绘相机视轴抖动实时测量

doi: 10.37188/CO-2022-0175
基金项目: 国家重点研发项目(No. 2016YFB0500802)
详细信息
    作者简介:

    翟国芳(1984—),男,山西晋中人,硕士,高级工程师,2011年于北京航空航天大学获得硕士学位,主要从事空间光学仪器方面的研究。E-mail:zhaigf044@126.com

  • 中图分类号: TH741

Real-time measurement for boresight vibration of dual line array surveying and mapping cameras

Funds: Supported by National Key Research and Development Program of China (No. 2016YFB0500802)
More Information
  • 摘要:

    本文建立了一个航天线阵测绘相机视轴测量模型,以实现对双线阵测绘相机视轴抖动的实时测量。首先,通过在相机焦平面两端设置激光收发装置,经由中央棱镜关联,构建了两台相机之间的夹角参数变化测量模型。接着,基于双矢量定姿原理推导了计算表达式,可以实现相机焦距及绕XYZ三轴变化量的高精度测量。对计算方法的误差进行了分析,并通过仿真进行了验证。此外,还对本文提出方法与工程上常用的简化方法之间的残差进行了仿真,结果表明,简化方法仅在很小的测量范围内与本文提出方法一致性良好,当测量角度范围扩大到2′时,采用本文提出的计算方法才能得到精度为0.1″的测量结果。最后,在热真空环境下进行了试验验证,结果显示采用该计算方法得到的相机内外参标定精度达0.1″,结果表明两台相机夹角参数表现出轨道周期性规律,为后续开展立体测绘任务提供了良好的参考。

     

  • 图 1  相机内外参数星上测量简图

    Figure 1.  Schematic diagram of the on-satellite measurement of the camera’s internal and external parameters

    图 2  单台相机内外参数星上测量示意图

    Figure 2.  Schematic diagram of the on-satellite measurement of internal and external parameters of a single camera

    图 3  基于双矢量定姿原理的处理流程

    Figure 3.  Processing flow based on the principle of Dual Vector Attitude Determination(DVAD)

    图 4  不同质心提取精度时各内外参数误差

    Figure 4.  Errors of internal and external parameters with different centroid extraction accuracy

    图 5  质心提取精度为0.1pixel时各测量参数误差

    Figure 5.  Error of each measurement parameter with the centroid extraction accuracy of 0.1 pixel

    图 6  不同焦距时各测量参数误差

    Figure 6.  The errors of each measurement parameter at different focal lengths

    图 7  不同CMOS探测器件间距L时各测量参数误差

    Figure 7.  The errors of each measurement parameter at different device spacing L

    图 8  双矢量方法和简化方法计算得到的内外参残差

    Figure 8.  Internal and external parameter residuals calculated by DVAD and simplified algorithm

    图 9  相机内外参数标定真空试验系统示意图及相机实物图

    Figure 9.  Schematic diagram of vacuum test system for internal and external parameter calibration and the picture of cameras

    图 10  热真空环境下相机内外参在连续2个循环内的标定结果

    Figure 10.  Internal and external parameter calibration results in a thermal vacuum in 2 circles

    表  1  基本输入参数

    Table  1.   Basic input parameters

    符号定义
    $ {OX_{{\text{OTA}}}}{Y_{{\text{OTA}}}}{Z_{{\text{OTA}}}} $镜头物方坐标系, $ O $为坐标原点,
    ${O' X' _{ {\text{OTA} } } }{ Y' _{ {\text{OTA} } } }{ Z_{ {\text{OTA} } } }$镜头像方坐标系,$ O' $为坐标原点,$ O'{X'_{{\text{OTA}}}} $从原点指向CCD线阵中心,$ {O'Z_{{\text{OTA}}}} $为视轴方向,第三轴符合右手定则
    $ {OX_{{\text{HRC}}}}{Y_{{\text{HRC}}}}{Z_{{\text{HRC}}}} $相机坐标系, $ {Z_{{\text{HRC}}}} $从CCD中心指向$O $点, $ {Y_{{\text{HRC}}}} $与 $ {Y_{{\text{OTA}}}} $方向一致
    $M_1 M_2 $焦平面上分置于CCD两端的面阵探测器
    $ {\theta _{m1}},{\theta _{m2}} $M1,M2探测器转角
    $ \begin{array}{l}{A}_{0}({x}_{c1},{y}_{c1}),\\ {B}_{0}({x}_{c2},{y}_{c2})\end{array} $M1,M2探测器中心点
    $ \begin{array}{l}{A}_{1}({x}_{01},{y}_{01}),\\ {B}_{1}({x}_{02},{y}_{02})\end{array} $M1,M2探测器坐标系下的初始坐标
    $ \begin{array}{l}{A}_{2}({x}_{11},{y}_{11}),\\ {B}_{2}({x}_{22},{y}_{22})\end{array} $M1,M2探测器坐标系下的实测坐标
    $ {F_{{\text{OTA}}}} $相机焦距
    $ \omega $离轴角
    下载: 导出CSV

    表  2  基本输入参数

    Table  2.   Basic input parameters

    参数数值
    像素大小$ d $/μm10
    离轴角$ \omega $/(°)6
    尺度因子/$ Kf $0.5
    M1探测器转角$ {\theta _{m1}} $/(°)0
    M2探测器转角$ {\theta _{m2}} $/(°)0
    M1初始点坐标 A1/pixel(0,0)
    M2初始点坐标B1/pixel(0,0)
    焦距, $ F_0 $/mm6000
    $ {L_{c1}} $/mm500
    $ {L_{c2}} $/mm−500
    M1M2 探测器像素规模5120×3840
    下载: 导出CSV
  • [1] GLEYZES J P, MEYGRET A, FRATTER C, et al.. SPOT5: system overview and image ground segment[C]. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), IEEE, 2003, 1: 300-302.
    [2] SUBRAHMANYAM D, KURIAKOSE S A, KUMAR P, et al. Design and development of the Cartosat payload for IRS P5 mission[J]. Proceedings of SPIE, 2006, 6405: 640517. doi: 10.1117/12.693860
    [3] SHIMODA H. Overview of Japanese Earth observation programs[J]. Proceedings of SPIE, 2011, 8176: 81760E.
    [4] WANG J R, WANG R X, HU X, et al. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124: 144-151. doi: 10.1016/j.isprsjprs.2017.01.003
    [5] XIE J F, TANG H ZH, DOU X H, et al.. On-orbit calibration of domestic APS star tracker[C]. 2014 Third International Workshop on Earth Observation and Remote Sensing Applications (EORSA), IEEE, 2014: 239-242.
    [6] XIE J F, WANG X. A robust autonomous star identification algorithm for ZY3 satellite[C]. 2012 First International Conference on Agro- Geoinformatics (Agro-Geoinformatics), IEEE, 2012: 1-4.
    [7] WEI X G, ZHANG G J, FAN Q Y, et al. Star sensor calibration based on integrated modelling with intrinsic and extrinsic parameters[J]. Measurement, 2014, 55: 117-125. doi: 10.1016/j.measurement.2014.04.026
    [8] XIONG K, WEI X G, ZHANG G J, et al. High-accuracy star sensor calibration based on intrinsic and extrinsic parameter decoupling[J]. Optical Engineering, 2015, 54(3): 034112. doi: 10.1117/1.OE.54.3.034112
    [9] 王建荣, 王任享, 胡莘. 三线阵影像外方位元素平滑方程自适应光束法平差[J]. 测绘学报,2018,47(7):968-972.

    WANG J R, WANG R X, HU X. Self-adaption bundle adjustment of three-line array image with smoothing equation of exterior orientation elements[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 968-972. (in Chinese)
    [10] 王任享, 王建荣, 胡莘. 光学卫星摄影无控定位精度分析[J]. 测绘学报,2017,46(3):332-337.

    WANG R X, WANG J R, HU X. Analysis of location accuracy without ground control points of optical satellite imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 332-337. (in Chinese)
    [11] 黎明, 吴清文, 江帆, 等. 三线阵立体测绘相机热控系统的设计[J]. 光学 精密工程,2010,18(6):1367-1373.

    LI M, WU Q W, JIANG F, et al. Design of thermal control system for three-linear array mapping cameras[J]. Optics and Precision Engineering, 2010, 18(6): 1367-1373. (in Chinese)
    [12] 高洪涛, 罗文波, 史海涛, 等. 资源三号卫星结构稳定性设计与实现[J]. 航天器工程,2016,25(6):18-24.

    GAO H T, LUO W B, SHI H T, et al. Structural stability design and implementation of ZY-3 satellite[J]. Spacecraft Engineering, 2016, 25(6): 18-24. (in Chinese)
    [13] 高卫军, 孙立, 王长杰, 等. “资源三号”高分辨率立体测绘卫星三线阵相机设计与验证[J]. 航天返回与遥感,2012,33(3):25-34. doi: 10.3969/j.issn.1009-8518.2012.03.006

    GAO W J, SUN L, WANG CH J, et al. Design and verification of three-line array camera for ZY-3 high resolution stereo mapping satellite[J]. Spacecraft Recovery &Remote Sensing, 2012, 33(3): 25-34. (in Chinese) doi: 10.3969/j.issn.1009-8518.2012.03.006
    [14] BAE S, WEBB C, SCHUTZ B. GLAS PAD calibration using laser reference sensor data[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2004: 1-10.
    [15] EVANS T. Optical development system life cycle for the ICESat-2 ATLAS instrument[C]. 2014 IEEE Aerospace Conference, 2014: 1-12.
    [16] 尤政, 王翀, 邢飞, 等. 空间遥感智能载荷及其关键技术[J]. 航天返回与遥感,2013,34(1):35-43.

    YOU ZH, WANG CH, XING F, et al. Key technologies of smart optical payload in space remote sensing[J]. Spacecraft Recovery &Remote Sensing, 2013, 34(1): 35-43. (in Chinese)
    [17] 来颖, 沈正祥, 王占山, 等. 基于菲涅尔双棱镜的在轨小角度测量方法[J]. 红外与激光工程,2016,45(3):0317002. doi: 10.3788/irla201645.0317002

    LAI Y, SHEN ZH X, WANG ZH SH, et al. Measurement method of in-orbit small angle based on Fresnel biprism[J]. Infrared and Laser Engineering, 2016, 45(3): 0317002. (in Chinese) doi: 10.3788/irla201645.0317002
    [18] 王慧, 刘薇, 于建冬, 等. 航天光学相机几何参数星上监测技术[J]. 光子学报,2018,47(10):1012001. doi: 10.3788/gzxb20184710.1012001

    WANG H, LIU W, YU J D, et al. Geometric parameters monitoring technology for space optical camera[J]. Acta Photonica Sinica, 2018, 47(10): 1012001. (in Chinese) doi: 10.3788/gzxb20184710.1012001
    [19] 高凌雁, 王伟之. 基于全光学路径的遥感相机视轴监测方法研究[J]. 光学技术,2019,45(1):44-48.

    GAO L Y, WANG W ZH. Research on space camera bore-sight monitor by a full-optical route[J]. Optical Technique, 2019, 45(1): 44-48. (in Chinese)
    [20] 温中凯, 张庆君, 李爽, 等. 空间光电跟瞄系统多光轴平行性标校研究[J]. 中国光学,2021,14(3):625-633. doi: 10.37188/CO.2020-0133

    WEN ZH K, ZHANG Q J, LI SH, et al. Multi-optical axis parallelism calibration of space photoelectric tracking and aiming system[J]. Chinese Optics, 2021, 14(3): 625-633. (in Chinese) doi: 10.37188/CO.2020-0133
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  203
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 修回日期:  2022-08-26
  • 录用日期:  2022-11-02
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!