留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures

WANG Dan XUE Bin TU Lang-ping ZHANG You-lin SONG Jun QU Jun-le KONG Xiang-gui

王丹, 薛彬, 涂浪平, 张友林, 宋军, 屈军乐, 孔祥贵. 钕敏化多层壳纳米结构的增强型染料敏化上转换发光[J]. 中国光学, 2021, 14(2): 418-430. doi: 10.37188/CO.2020-0097
引用本文: 王丹, 薛彬, 涂浪平, 张友林, 宋军, 屈军乐, 孔祥贵. 钕敏化多层壳纳米结构的增强型染料敏化上转换发光[J]. 中国光学, 2021, 14(2): 418-430. doi: 10.37188/CO.2020-0097
WANG Dan, XUE Bin, TU Lang-ping, ZHANG You-lin, SONG Jun, QU Jun-le, KONG Xiang-gui. Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures[J]. Chinese Optics, 2021, 14(2): 418-430. doi: 10.37188/CO.2020-0097
Citation: WANG Dan, XUE Bin, TU Lang-ping, ZHANG You-lin, SONG Jun, QU Jun-le, KONG Xiang-gui. Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures[J]. Chinese Optics, 2021, 14(2): 418-430. doi: 10.37188/CO.2020-0097

钕敏化多层壳纳米结构的增强型染料敏化上转换发光

doi: 10.37188/CO.2020-0097
详细信息
  • 中图分类号: TP394.1;TH691.9

Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures

Funds: Supported by National Key R&D Program of China (No. 2018YFC0910602); National Natural Science Foundation of China (No. 61605130, No. 11604331, No. 61775145, No. 61835009); Project of Science and Technology Agency, Jilin Province (No. 20180101222JC); Shenzhen Basic Research Project (No. JCYJ20180305125425815)
More Information
    Author Bio:

    WANG Dan (1986—), female, born in Songyuan City, Jilin province. She is a doctor and postdoctor. In 2015, she received her doctorate from the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. She is mainly engaged in the design of luminescent materials, the bio-functionalization of nanomaterials, and the application of biological photonics and nano-biomedicine. E-mail: wangdan66322@163.com

    KONG Xiang-gui (1955—), male, born in Qufu City, Shandong Province. He is a doctor, researcher and doctoral supervisor. He received his bachelor’s degree from the University of Science and Technology of China in 1980 and his doctor’s degree from the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 1998. He is currently a director of the Biophysical Society of China, mainly engaged in the research on the application of biomedical imaging, photodynamic therapy and luminescent nanomaterials in biomedicine. E-mail: xgkong14@ciomp.ac.cn

    Corresponding author: songjun@szu.edu.cnxgkong14@ciomp.ac.cn
  • 摘要: 对于稀土离子掺杂的上转换发光,由于稀土离子吸收截面小、吸收范围窄,导致其发光强度受限。最近,在稀土上转换纳米粒子的表面连接近红外染料分子敏化发光,被证实是提高上转换发光强度的有效策略。然而,将染料分子连接经典的稀土Yb掺杂纳米粒子,并不能有效利用染料分子的敏化能力。针对这一问题,本文通过高温热分解法成功制备了Nd3+敏化的核/壳/壳 (NaYF4:Yb/Er (20/2%)@ NaYF4:Yb (10 %)@ NaYF4:Nd (80 %))纳米结构,与经典的IR-806敏化的NaYF4:Yb/Er纳米结构相比,IR-806敏化的Nd3+掺杂的核/壳/壳纳米结构的上转换发光(500~700 nm)强度增强了约38倍。通过荧光光谱及荧光寿命分析证实,上转换发光强度增强源于Nd的吸收与近红外染料分子的有效交叠,以及壳层结构对发光中心的保护作用(Er3+ (4S3/24I15/2)的寿命延长了1.7倍)。另外,研究发现纳米壳层结构中最外层掺杂的Yb3+离子将导致染料敏化发光减弱。进一步,这种IR-806敏化的Nd掺杂的核/壳/壳纳米结构可实现增强发光中心为Ho及Tm的上转换发光。本文研究为提高染料敏化上转换发光及应用提供了新途径。
  • 图  1  上转换纳米粒子的核(a),核/壳(b),核/壳/壳(c)电镜表征图及尺寸分布(d)

    Figure  1.  TEM images of core (a), core/shell (b) and core/shell/shell (c) of up-conversion nanoparticles and their size distributions (d)

    图  2  (a)上转换纳米粒子的核、核/壳、核/壳/壳XRD及标准卡片β-NaYF4 (JCPDS-16-0334, 底部)结果,(b)上转换CSS的EDS数据,(c)IR-806 合成过程图,(d)合成前后IR-780 和 IR-806的吸收,(e)连接IR-806之后UCNPs吸收和UCNPs本身的吸收

    Figure  2.  (a) XRD data of C, CS and CSS of UCNPs and the β-NaYF4 (JCPDS-16-0334, bottom); (b) EDS data of CSS; (c) IR-806 synthesis process; (d) absorptions of IR-780 and IR-806 before and after synthesis; (e) absorption of UCNPs and dye conjugated UCNPs after IR-806 connection

    图  3  (a)IR-806敏化CSS结构的上转换光谱及IR-806敏化核结构的上转换光谱,激发波长为808 nm,(b)808 nm激发下的IR-806敏化的CSS结构的上转换发光强度随功率变化的log-log关系

    Figure  3.  (a) Up-conversion luminescence (UCL) spectra of IR-806-sensitized CSS structure and IR-806-sensitized core structure under 808 nm excitation wavelength; (b) log-log plots of the UCL intensity versus laser power for the IR-806 dye-sensitized CSS under 808 nm excitation

    图  4  (a)IR-806分子的发射光谱与Nd3+的吸收交叠图;(b) 980 nm激发下,测试得到的核纳米粒子(黑色, NaYF4: Yb/Er (20/2%)),染料敏化核纳米粒子(红色)及染料敏化的CSS纳米结构(蓝色)的Er3+ (4S3/24I15/2)的寿命测试结果;(c)808 nm激发下CSS纳米结构及染料敏化的CSS纳米结构的Er3+ (4S3/24I15/2)的寿命测试结果

    Figure  4.  (a) Overlap between the emission spectrum of IR-806 molecules and the absorption spectrum of Nd3+; (b) the lifetimes of Er3+ (4S3/24I15/2) in core nanoparticles (black, NaYF4:Yb/Er (20/2%), dye-sensitized core nanoparticles (red) and dye-sensitized CSS nanostructure (blue) under 980 nm excitation; (c) the lifetimes of Er3+ (4S3/24I15/2) in CSS nanostructure and dye-sensitized CSS nanostructure under 808 nm excitation

    图  5  染料敏化的NaYF4:Yb/Er (20/2%)@ NaYF4:Yb (10%)@ NaYF4:Nd/Yb (80/x%) (x=0, 5, 10, 20)的上转换光谱(808 nm激发)

    Figure  5.  Upconversion spectra of dye-sensitized NaYF4:Yb/Er(20/2%)@ NaYF4:Yb (10%)@ NaYF4:Nd/Yb (80/x%) (x=0, 5, 10, 20) nanoparticles under 808 nm excitation

    图  6  (a)IR-806敏化Ho核结构及IR-806敏化Ho-CSS结构的上转换光谱,(b) IR-806敏化Tm核结构及IR-806敏化Tm-CSS结构的上转换光谱,(c) 808 nm激发下的IR-806敏化的Ho-CSS结构的上转换发光强度随功率变化的log-log关系,(d) 808 nm激发下的IR-806敏化的Tm-CSS结构的上转换发光强度随功率变化的log-log关系

    Figure  6.  (a) The UCL of the IR-806 sensitized Ho core nanostructure and IR-806 sensitized Ho-CSS nanostructure, (b) the UCL of the IR-806 sensitized Tm core nanostructure and IR-806 sensitized Tm-CSS nanostructure, (c) log-log plots of the UCL intensity over laser power for the green and red emissions of the dye-sensitized Ho-CSS under 808 nm excitation, (d) log-log plots of the UCL intensity versus laser power for the green and red emissions of the dye-sensitized Tm-CSS under 808 nm excitation

  • [1] AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chemical Reviews, 2004, 104(1): 139-174. doi: 10.1021/cr020357g
    [2] LI X X, LI Y Q, WANG X, et al. Highly sensitive down-conversion optical temperature-measurement material: NaGd(WO4)2:Yb3+/Er3 +[J]. Chinese Optics, 2019, 12(3): 596-605. (in Chinese) doi: 10.3788/co.20191203.0596
    [3] HE F, GAI SH L, YANG P P, et al. Luminescence modification and application of the lanthanide upconversion fluorescence materials[J]. Chinese Journal of Luminescence, 2018, 39(1): 92-106. (in Chinese) doi: 10.3788/fgxb20183901.0092
    [4] WANG F, WEN SH H, HE H, et al. Microscopic inspection and tracking of single upconversion nanoparticles in living cells[J]. Light:Science &Applications, 2018, 7(4): e18007.
    [5] CHEN SH, WEITEMIER A Z, ZENG X, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J]. Science, 2018, 359(6376): 679-684.
    [6] LIU Y J, LU Y Q, YANG X S, et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 2017, 543(7644): 229-233. doi: 10.1038/nature21366
    [7] WANG D, XUE B, OHULCHANSKYY T Y, et al. Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy[J]. Biomaterials, 2020, 251: 120088. doi: 10.1016/j.biomaterials.2020.120088
    [8] XUE B, WANG D, ZHANG Y L, et al. Regulating the color output and simultaneously enhancing the intensity of upconversion nanoparticles via a dye sensitization strategy[J]. Journal of Materials Chemistry C, 2019, 7(28): 8607-8615. doi: 10.1039/C9TC02293G
    [9] TU L P, LIU X M, WU F, et al. Excitation energy migration dynamics in upconversion nanomaterials[J]. Chemical Society Reviews, 2015, 44(6): 1331-1345. doi: 10.1039/C4CS00168K
    [10] XU W, CHEN X, SONG H W. Manipulation of local electromagnetic field in upconversion luminescence of rare earth ions[J]. Chinese Journal of Luminescence, 2018, 39(1): 1-26. (in Chinese) doi: 10.3788/fgxb20183901.0001
    [11] ZOU W Q, VISSER C, MADURO J A, et al. Broadband dye-sensitized upconversion of near-infrared light[J]. Nature Photonics, 2012, 6(8): 560-564. doi: 10.1038/nphoton.2012.158
    [12] CHEN G Y, DAMASCO J, QIU H L, et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal[J]. Nano Letters, 2015, 15(11): 7400-7407. doi: 10.1021/acs.nanolett.5b02830
    [13] WANG D, WANG D, KUZMIN A, et al. ICG-sensitized NaYF4:Er nanostructure for theranostics[J]. Advanced Optical Materials, 2018, 6(12): 1701142. doi: 10.1002/adom.201701142
    [14] WANG D, XUE B, KONG X G, et al. 808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging[J]. Nanoscale, 2015, 7(1): 190-197. doi: 10.1039/C4NR04953E
    [15] WANG D, XUE B, SONG J, et al. Compressed energy transfer distance for remarkable enhancement of the luminescence of Nd3+-sensitized upconversion nanoparticles[J]. Journal of Materials Chemistry C, 2018, 6(24): 6597-6604. doi: 10.1039/C8TC00936H
    [16] ZHONG Y T, TIAN G, GU Z J, et al. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+ -sensitized nanoparticles[J]. Advanced Materials, 2014, 26(18): 2831-2837. doi: 10.1002/adma.201304903
    [17] XUE B, WANG D, TU L P, et al. Ultrastrong absorption meets ultraweak absorption: unraveling the energy-dissipative routes for dye-sensitized upconversion luminescence[J]. Journal of Physical Chemistry Letters, 2018, 9(16): 4625-4631. doi: 10.1021/acs.jpclett.8b01931
    [18] LI J, LIU L, GUO H Q, et al. An upconversion fluorescent method for rapid detection of perfluorooctane sulfonate in water samples based on fluorine- fluorine interaction[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 380-387. (in Chinese)
    [19] SHAO SH, DING B B, ZHU ZH L, et al. Preparation of water-soluble up-conversion nano-drug by host-guest chemistry and its application in tumor diagnosis and treatment[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6): 823-831. (in Chinese)
    [20] CUI L, ZHAO M H, ZHANG CH Y. Recent advance in applications of host-guest interaction in biochemical analysis[J]. Chinese Journal of Analytical Chemistry, 2020, 48(7): 817-826. (in Chinese)
    [21] MENG ZH P, WU S L. Manipulating upconversion luminescence of rare earth by photonic crystals[J]. Chinese Journal of Luminescence, 2020, 41(8): 913-925. (in Chinese) doi: 10.37188/fgxb20204108.0913
    [22] SUN J F, YAN D, LIU L. Three-primary-color upconversion in single lanthanide based nanoparticle[J]. Chinese Journal of Luminescence, 2020, 41(1): 1-8. (in Chinese) doi: 10.3788/fgxb20204101.0001
    [23] YU H Y, TU L P, ZHANG Y L, et al. Quantitative analysis of the surface quenching effect of lanthanide-doped upconversion nanoparticles in solvents[J]. Chinese Optics, 2019, 12(6): 1288-1294. (in Chinese) doi: 10.3788/co.20191206.1288
    [24] FISCHER S, BRONSTEIN N D, SWABECK J K, et al. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals[J]. Nano Letters, 2016, 16(11): 7241-7247. doi: 10.1021/acs.nanolett.6b03683
  • 加载中
图(6)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  59
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 修回日期:  2020-06-24
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回