留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向天基引力波探测的时间延迟干涉技术

王登峰 姚鑫 焦仲科 任帅 刘玄 钟兴旺

王登峰, 姚鑫, 焦仲科, 任帅, 刘玄, 钟兴旺. 面向天基引力波探测的时间延迟干涉技术[J]. 中国光学(中英文), 2021, 14(2): 275-288. doi: 10.37188/CO.2020-0098
引用本文: 王登峰, 姚鑫, 焦仲科, 任帅, 刘玄, 钟兴旺. 面向天基引力波探测的时间延迟干涉技术[J]. 中国光学(中英文), 2021, 14(2): 275-288. doi: 10.37188/CO.2020-0098
WANG Deng-feng, YAO Xin, JIAO Zhong-ke, REN Shuai, LIU Xuan, ZHONG Xing-wang. Time-delay interferometry for space-based gravitational wave detection[J]. Chinese Optics, 2021, 14(2): 275-288. doi: 10.37188/CO.2020-0098
Citation: WANG Deng-feng, YAO Xin, JIAO Zhong-ke, REN Shuai, LIU Xuan, ZHONG Xing-wang. Time-delay interferometry for space-based gravitational wave detection[J]. Chinese Optics, 2021, 14(2): 275-288. doi: 10.37188/CO.2020-0098

面向天基引力波探测的时间延迟干涉技术

基金项目: 中国航天科技集团公司自主研发项目(No. Y18-JTKJCX-01)
详细信息
    作者简介:

    王登峰(1979—),男,陕西西安人,硕士,高级工程师,2011年于西安电子科技大学获得硕士学位,主要从事星间精密测量与时间同步技术的研究与产品开发。E-mail:wangdf@cast504.com

    姚 鑫(1990—),男,陕西渭南人,博士,工程师,2019年于清华大学获得博士学位,主要从事星间激光通信测距与星载相位计的研究与产品开发。E-mail:yaox1@cast504.com

    焦仲科(1988—),男,甘肃白银人,博士,工程师,2017年于中国科学院光电技术研究所获得博士学位,主要从事星间精密测量研究。E-mail:jiaozk12@cast504.com

    任 帅(1988—),男,陕西榆林人,硕士,工程师,2016年于空间技术研究院获得硕士学位,主要从事星载高精度相位计研究。E-mail:rens@cast504.com

    刘 玄(1988—),男,陕西西安人,硕士,高级工程师,2013年于西安电子科技大学获得硕士学位,主要从事星载微波-激光混合测量链路研究。E-mail:liux73@cast504.com

    钟兴旺(1967—),男,山西忻州人,博士,研究员,1990年于西北工业大学获得学士学位,2010年于中国空间技术研究院获得博士学位,主要从事星间链路组网通信与基线测量设备研制。E-mail:zhongxw@cast504.com

    通讯作者:

    姚鑫,中国空间技术研究院西安分院(陕西省西安市长安区东长安街504号,邮编:710100),联系电话:17791282559,029-89253514,E-mail:yaox1@cast504.com

  • 中图分类号: O436.1

Time-delay interferometry for space-based gravitational wave detection

Funds: Supported by China Aerospace Science and Technology Corporation’s Independent Research and Development Project (No. Y18-JTKJCX-01)
More Information
  • 摘要: 时间延迟干涉技术(Time-delay Interferometry,TDI)对中国引力波探测项目及其它天基激光精密测量任务具有重要的参考价值。在天基引力波探测任务中,需利用激光干涉仪对无拖曳检验质量块间实现十皮米量级的位移测量精度。其中,激光源频率噪声和时钟频率噪声是两项主要噪声。在欧洲主导的LISA(Laser Interferometer Space Antenna)引力波探测项目中,利用TDI对三星上的十二组相位测量值进行延迟和线性组合,构造出臂长相等的干涉仪,从而消除了激光源噪声以及光学平台位移噪声。为了消除时钟噪声,将时钟信号倍频到GHz,再通过相位调制的方式加载到星间激光链路上,最终从时钟边带拍频信号中提取出时钟噪声,并在TDI的数据组合中将时钟噪声项消除。为了实现TDI的时间延迟处理,要求对星间绝对距离进行精确测量。因此,在TDI机制中,星间激光链路需要同时实现位移测量、时钟边带调制和绝对距离测量3个功能。其中,后两个功能分别大约消耗10%和1%的载波激光功率。LISA项目针对TDI技术的地面论证结果表明,TDI技术对激光源和时钟的噪声抑制分别达到了109和5.8×104倍。

     

  • 图 1  天基迈克尔逊干涉仪

    Figure 1.  Space-based Michelson interferometer

    图 2  TDI原理示意图

    Figure 2.  Diagrams of TDI principles

    图 3  LISA光学系统示意图(已获参考文献[19]授权© American Physical Society)

    Figure 3.  The illustration of optical system in the LISA mission (Reprinted with permission from ref. [19] © American Physical Society)

    图 4  X型数据组合物理模型

    Figure 4.  The physics modal of the X type data combination

    图 5  当星座旋转时,${L'_i} \ne {L_i}$

    Figure 5.  In the case of the constellation rotation, ${L'_i} \ne {L_i}$

    图 6  时钟边带调制示意图。EOM:电光调制器

    Figure 6.  Schematic diagram of clock sideband modulation. EOM: Electro-Optic Modulator

    图 7  探测端信号处理示意图。NCO:数控振荡器

    Figure 7.  Signal processing illustration of photon detection. NCO: Numerically Controlled Oscillator

    图 8  在载波相位上调制数据码和伪随机码用于星间数据传输和绝对距离测量示意图

    Figure 8.  The phase of the carrier is modulated by data codes and pseudo-random codes for the inter-satellite data transmission and absolute distance measurement

    图 9  数据码和伪随机码参数设计流程(已获参考文献[24]授权© The Optical Society)

    Figure 9.  Flow chart of parameter design of data codes and pseudo-random codes (Reprinted with permission from ref. [24] © The Optical Society)

    图 10  光载波经过时钟信号和扩频调制后的干涉测量结果(已获参考文献[24]授权© The Optical Society)

    Figure 10.  Interference measurement results when the optical carriers are modulated by the clock signal and broaden spectrum (Reprinted with permission from ref. [24] © The Optical Society)

    图 11  LISA干涉仪测试床位移测量结果(已获参考文献[22]授权© American Physical Society)

    Figure 11.  The displacement measurment results in the LISA interferometry test bed (Reprinted with permission from ref. [22] © American Physical Society)

  • [1] ABBOTT B P, ABBOTT R, ABBOTT T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102
    [2] ABBOTT B P, ABBOTT R, ABBOTT T D et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral[J]. Physical Review Letters, 2017, 119(16): 161101.
    [3] BARACK L, CARDOSO V, NISSANKE S, et al. Black holes, gravitational waves and fundamental physics: a roadmap[J]. Classical and Quantum Gravity, 2019, 36(14): 143001. doi: 10.1088/1361-6382/ab0587
    [4] DANZMANN K, RUDIGER A. LISA technology-concept, status, prospects[J]. Classical and Quantum Gravity, 2003, 20(10): S1-S9. doi: 10.1088/0264-9381/20/10/301
    [5] WANNER G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way[J]. Nature Physics, 2019, 15(3): 200-202. doi: 10.1038/s41567-019-0462-3
    [6] ARMANO M, AUDLEY H, BAIRD J, et al. LISA pathfinder platform stability and drag-free performance[J]. Physical Review D, 2019, 99(8): 082001. doi: 10.1103/PhysRevD.99.082001
    [7] ABICH K, BRAXMAIER C, GOHLKE M, et al. In-orbit performance of the GRACE follow-on laser ranging interferometer[J]. Physical Review Letters, 2019, 123(3): 031101. doi: 10.1103/PhysRevLett.123.031101
    [8] 王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学,2018,11(1):131-151. doi: 10.3788/co.20181101.0131

    WANG ZH, SHA W, CHEN ZH, et al. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics, 2018, 11(1): 131-151. (in Chinese) doi: 10.3788/co.20181101.0131
    [9] LUO Z R, LIU H SH, JIN G. The recent development of interferometer prototype for Chinese gravitational wave detection pathfinder mission[J]. Optics &Laser Technology, 2018, 105: 146-151.
    [10] 刘河山, 高瑞弘, 罗子人, 等. 空间引力波探测中的绝对距离测量及通信技术[J]. 中国光学,2019,12(3):486-492. doi: 10.3788/co.20191203.0486

    LIU H SH, GAO R H, LUO Z R, et al. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 486-492. (in Chinese) doi: 10.3788/co.20191203.0486
    [11] LI Y P, LIU H SH, ZHAO Y, et al. Demonstration of an ultraprecise optical bench for the Taiji space gravitational wave detection pathfinder mission[J]. Applied Sciences, 2019, 9(10): 2087. doi: 10.3390/app9102087
    [12] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报,2020,7(1):3-10.

    LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10. (in Chinese)
    [13] LUO J, CHEN L SH, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010
    [14] SHI CH F, BAO J H, WANG H T, et al. Science with the TianQin observatory: preliminary results on testing the no-hair theorem with ringdown signals[J]. Physical Review D, 2019, 100(4): 044036. doi: 10.1103/PhysRevD.100.044036
    [15] ZHANG J Y, MING M, JIANG Y Z, et al. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission[J]. Review of Scientific Instruments, 2018, 89(6): 064501. doi: 10.1063/1.5019433
    [16] FALLER J E, BENDER P L. A possible laser gravitational wave experiment in space[C]. Program and Abstracts of Second International Conference on Precision Measurement and Fundamental Constants (PMFC-II), National Bureau of Standards, 1981: 689-690.
    [17] TINTO M, DHURANDHAR S V. Time-delay interferometry[J]. Living Reviews in Relativity, 2014, 17: 6. doi: 10.12942/lrr-2014-6
    [18] ESTABROOK F B, TINTO M, ARMSTRONG J W. Time-delay analysis of LISA gravitational wave data: elimination of spacecraft motion effects[J]. Physical Review D, 2000, 62(4): 042002. doi: 10.1103/PhysRevD.62.042002
    [19] TINTO M, ESTABROOK F B, ARMSTRONG J W. Time-delay interferometry for LISA[J]. Physical Review D, 2002, 65(8): 082003. doi: 10.1103/PhysRevD.65.082003
    [20] TINTO M, HARTWIG O. Time-delay interferometry and clock-noise calibration[J]. Physical Review D, 2018, 98(4): 042003. doi: 10.1103/PhysRevD.98.042003
    [21] DE VINE G, RABELING D S, SLAGMOLEN B J J, et al. Picometer level displacement metrology with digitally enhanced heterodyne interferometry[J]. Optics Express, 2009, 17(2): 828-837. doi: 10.1364/OE.17.000828
    [22] DE VINE G, WARE B, MCKENZIE K, et al. Experimental demonstration of time-delay interferometry for the laser interferometer space antenna[J]. Physical Review Letters, 2010, 104(21): 211103. doi: 10.1103/PhysRevLett.104.211103
    [23] SPERO R, BACHMAN B, DE VINE G, et al. Progress in interferometry for LISA at JPL[J]. Classical and Quantum Gravity, 2011, 28(9): 094007. doi: 10.1088/0264-9381/28/9/094007
    [24] ESTEBAN J J, GARCÍA A F, BARKE S, et al. Experimental demonstration of weak-light laser ranging and data communication for LISA[J]. Optics Express, 2011, 19(17): 15937-15946. doi: 10.1364/OE.19.015937
    [25] HEINZEL G, ESTEBAN J J, BARKE S, et al. Auxiliary functions of the LISA laser link: ranging, clock noise transfer and data communication[J]. Classical and Quantum Gravity, 2011, 28(9): 094008. doi: 10.1088/0264-9381/28/9/094008
    [26] BRAUSE N C. Auxiliary function development for the LISA metrology system[D]. Hannover: Gottfried Wilhelm Leibniz Universität, 2018.
    [27] ISLEIF K S. Laser interferometry for LISA and satellite geodesy missions[D]. Hannover: Gottfried Wilhelm Leibniz Universität, 2018.
    [28] SCHWARZE T S, BARRANCO G F, PENKERT D, et al. Picometer-stable hexagonal optical bench to verify LISA phase extraction linearity and precision[J]. Physical Review Letters, 2019, 122(8): 081104. doi: 10.1103/PhysRevLett.122.081104
    [29] SHEARD B S, GRAY M B, MCCLELLAND D E, et al. Laser frequency stabilization by locking to a LISA arm[J]. Physics Letters A, 2003, 320(1): 9-21. doi: 10.1016/j.physleta.2003.10.076
    [30] SHADDOCK D, MCKENZIE K, SPERO R, et al.. LISA frequency control white paper[R]. 2009. https://atrium.in2p3.fr/nuxeo/nxfile/default/f6aa40dc-d83b-44b2-9bd7-ee4e93d88c82/file:content/FCSTWhitePaper.pdf.
    [31] KARLEN L, KUNDERMANN S, TORCHEBOEUF N, et al.. Laser system for the LISA mission[C]. 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum, IEEE, 2019: 1-2.
    [32] CORNISH N J, HELLINGS R W. The effects of orbital motion on LISA time delay interferometry[J]. Classical and Quantum Gravity, 2003, 20(22): 4851-4860. doi: 10.1088/0264-9381/20/22/009
    [33] KULLMANN J. Development of a digital phase measuring system with microradian precision for LISA[D]. Hannover: Gottfried Wilhelm Leibniz Universität, 2012.
    [34] GERBERDING O. Phase readout for satellite interferometry[D]. Hannover: Gottfried Wilhelm Leibniz Universität, 2014.
    [35] POLLACK S E, STEBBINS R T. Demonstration of the zero-crossing phasemeter with a LISA test-bed interferometer[J]. Classical and Quantum Gravity, 2006, 23(12): 4189-4200. doi: 10.1088/0264-9381/23/12/014
    [36] POLLACK S E, STEBBINS R T. A demonstration of LISA laser communication[J]. Classical and Quantum Gravity, 2006, 23(12): 4201-4213. doi: 10.1088/0264-9381/23/12/015
    [37] GRÜNING P, HALLOIN H, PRAT P, et al. Status of the eLISA on table (LOT) electro-optical simulator for space based, long arms interferometers[J]. Experimental Astronomy, 2015, 39(2): 281-302. doi: 10.1007/s10686-015-9448-z
    [38] LAPORTE B M, HALLOIN H, BRÉELLE E, et al. Status of the LISA On table experiment: a electro-optical simulator for LISA[J]. Journal of Physics:Conference Series, 2017, 840: 012014. doi: 10.1088/1742-6596/840/1/012014
    [39] FRANCIS S P, SHADDOCK D A, SUTTON A J, et al. Tone-assisted time delay interferometry on GRACE Follow-On[J]. Physical Review D, 2015, 92(1): 012005. doi: 10.1103/PhysRevD.92.012005
  • 加载中
图(11)
计量
  • 文章访问数:  3122
  • HTML全文浏览量:  835
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 修回日期:  2020-07-13
  • 网络出版日期:  2021-03-01
  • 刊出日期:  2021-03-23

目录

    /

    返回文章
    返回