留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

样品温度和空间约束两种方法相结合对激光诱导击穿光谱的影响

于丹 孙艳 冯志书 代玉银 陈安民 金明星

于丹, 孙艳, 冯志书, 代玉银, 陈安民, 金明星. 样品温度和空间约束两种方法相结合对激光诱导击穿光谱的影响[J]. 中国光学(中英文), 2021, 14(2): 336-343. doi: 10.37188/CO.2020-0118
引用本文: 于丹, 孙艳, 冯志书, 代玉银, 陈安民, 金明星. 样品温度和空间约束两种方法相结合对激光诱导击穿光谱的影响[J]. 中国光学(中英文), 2021, 14(2): 336-343. doi: 10.37188/CO.2020-0118
YU Dan, SUN Yan, FENG Zhi-shu, DAI Yu-yin, CHEN An-min, JIN Ming-xing. Effects of the combination of sample temperature and spatial confinement on laser-induced breakdown spectroscopy[J]. Chinese Optics, 2021, 14(2): 336-343. doi: 10.37188/CO.2020-0118
Citation: YU Dan, SUN Yan, FENG Zhi-shu, DAI Yu-yin, CHEN An-min, JIN Ming-xing. Effects of the combination of sample temperature and spatial confinement on laser-induced breakdown spectroscopy[J]. Chinese Optics, 2021, 14(2): 336-343. doi: 10.37188/CO.2020-0118

样品温度和空间约束两种方法相结合对激光诱导击穿光谱的影响

基金项目: 国家自然科学基金资助项目(No. 11674128, No. 11674124, No. 11974138);吉林省教育厅“十三五”科学技术研究规划项目(No. JJKH20200937KJ)
详细信息
    作者简介:

    于 丹(1983—),女,吉林长春人,硕士,实验师,2006年于吉林大学物理学院获得学士学位,2014年于吉林大学原子与分子物理研究所获得硕士学位,主要从事激光诱导击穿光谱、物理实验教学等方向的研究。E-mail:61293289@qq.com

    金明星(1965—),男,吉林长春人,博士,教授,博士生导师,1991年于吉林大学原子与分子物理研究所获得博士学位,主要研究方向为强激光与原子分子相互作用的研究。E-mail:mxjin@jlu.edu.cn

  • 中图分类号: O657.3

Effects of the combination of sample temperature and spatial confinement on laser-induced breakdown spectroscopy

Funds: Supported by National Natural Science Foundation of China (No. 11674128, No. 11674124, No. 11974138); the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province (No. JJKH20200937KJ)
More Information
  • 摘要: 升高样品温度和采用空间约束能提高激光诱导击穿光谱的信号强度,两种技术的结合可以进一步提高激光诱导击穿光谱的光谱强度。本文在空气环境中研究了升高样品温度和空间约束效应两种方法相结合对激光诱导击穿光谱的影响,测量了激光诱导铝等离子体的时间分辨光谱。实验结果表明:升高样品温度能增加激光诱导击穿光谱的信号强度,高温样品能耦合更多的激光能量;当圆柱形腔被用于约束等离子体时,信号强度得到了进一步提高。两个实验条件的结合对于激光诱导击穿光谱信号增强的效果明显强于单独升高样品温度或者单独采用空间约束的增强效果。单一200 °C高温下样品的Al(I) 396.2 nm线强度增加了1.4倍;单一空间约束条件下的Al(I) 396.2 nm线强度增加了1.3倍;而在200 °C和空间约束的组合条件下,Al(I) 396.2 nm线强度增加了2.1倍。这个结合效应增强效果产生主要由于激光照射高温样品产生更强的冲击波,从而能更有效地压缩高温下产生的更大尺寸的等离子体羽,进一步提高了激光诱导击穿光谱的强度。

     

  • 图 1  实验装置示意图(M为反射镜;I为光阑;Pd为光电二极管;DM为双色镜;L为透镜)

    Figure 1.  Schematic diagram of experimental setup (M is the mirror; I is the iris; Pd is the photodiode; DM is the dichroic mirror; L is the lens)

    图 2  不同样品温度下铝的LIBS时间积分光谱,延迟时间为6 μs,积分时间为20 μs,激光能量为40 mJ

    Figure 2.  Time-integrated spectra of aluminum plasma at different sample temperatures when the delay time is 6 μs, the integrated time is 20 μs, and the laser energy is 40 mJ

    图 3  不同样品温度下Al(I) 396.2 nm峰强度随着延迟时间的变化,门宽为0.5 μs,激光能量为40 mJ

    Figure 3.  Evolution of peak intensity of Al (I) 396.2 nm at different sample temperatures when gate width is 0.5 μs, and the laser energy is 40 mJ

    图 4  有无空间约束下不同样品温度的Al(I) 396.2 nm峰强度随着延迟时间的变化情况,门宽为0.5 μs,激光能量为40 mJ

    Figure 4.  Evolution of peak intensity of Al (I) 396.2 nm with and without space confinement as a function of delay time at different sample temperatures when gate width is 0.5 μs, and laser energy is 40 mJ

    图 5  有无空间约束下不同样品温度的Al(I) 396.2 nm信背比随着延迟时间的变化,门宽为0.5 μs,激光能量为40 mJ

    Figure 5.  Evolution of SBR of Al (I) 396.2 nm with and without space confinement as a function of delay time at different sample temperatures when gate width is 0.5 μs, and the laser energy is 40 mJ

    图 6  无(a),有(b)空间约束下不同样品温度的Al等离子体光谱对比,延迟时间为12.5 μs,门宽为0.5 μs,激光能量为40 mJ

    Figure 6.  Comparison of spectra of Al plasmas without (a) and with (b) spatial confinement at different sample temperatures, when the delay time is 12.5 μs, the gate width is 0.5 μs, and the laser energy is 40 mJ

    图 7  有无空间约束下不同样品温度Al(I) 396.2 nm峰强度对比,延迟时间为12.5 μs,门宽为0.5 μs,激光能量为40 mJ

    Figure 7.  Comparison of peak intensity of Al (I) 396.2 nm at different sample temperatures with and without space confinement when the delay time is 12.5 μs, the gate width is 0.5 μs, and the laser energy is 40 mJ

    图 8  低、高样品温度下冲击波与等离子体羽之间相互作用的示意图

    Figure 8.  Schematic diagram of the interaction between the shock wave and the plasma plume at low and high sample temperatures

  • [1] 刘津, 孙通, 甘兰萍. 基于内标法和CARS变量优选的倍硫磷含量LIBS检测[J]. 发光学报,2018,39(5):737-744. doi: 10.3788/fgxb20183905.0737

    LIU J, SUN T, GAN L P. Detection of fentshion content by LIBS combined with internal standard and CARS variable selection method[J]. Chinese Journal of Luminescence, 2018, 39(5): 737-744. (in Chinese) doi: 10.3788/fgxb20183905.0737
    [2] 王慧丽, 王建伟, 周强, 等. 激光诱导击穿光谱法定量分析水泥中的铜元素[J]. 发光学报,2017,38(11):1553-1558. doi: 10.3788/fgxb20173811.1553

    WANG H L, WANG J W, ZHOU Q, et al. Quantitative analysis of Cu in cement by laser induced breakdown spectroscopy[J]. Chinese Journal of Luminescence, 2017, 38(11): 1553-1558. (in Chinese) doi: 10.3788/fgxb20173811.1553
    [3] 李占锋, 王芮雯, 邓琥, 等. 黄连、附片和茯苓内铜元素激光诱导击穿光谱分析[J]. 发光学报,2016,37(1):100-105. doi: 10.3788/fgxb20163701.0100

    LI ZH F, WANG R W, DENG H, et al. Laser induced breakdown spectroscopy of Cu in coptis chinensis, aconite root and poria cocos[J]. Chinese Journal of Luminescence, 2016, 37(1): 100-105. (in Chinese) doi: 10.3788/fgxb20163701.0100
    [4] 李安, 王亮伟, 郭帅, 等. 激光诱导击穿光谱增强机制及技术研究进展[J]. 中国光学,2017,10(5):619-640. doi: 10.3788/co.20171005.0619

    LI A, WANG L W, GUO SH, et al. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy[J]. Chinese Optics, 2017, 10(5): 619-640. (in Chinese) doi: 10.3788/co.20171005.0619
    [5] 李昂泽, 王宪双, 徐向君, 等. 激光诱导击穿光谱技术对烟草快速分类研究[J]. 中国光学,2019,12(5):1139-1146. doi: 10.3788/co.20191205.1139

    LI A Z, WANG X SH, XU X J, et al. Fast classification of tobacco based on laser-induced breakdown spectroscopy[J]. Chinese Optics, 2019, 12(5): 1139-1146. (in Chinese) doi: 10.3788/co.20191205.1139
    [6] 王宪双, 郭帅, 徐向君, 等. 基于激光诱导击穿光谱和拉曼光谱对四唑类化合物的快速识别和分类实验研究[J]. 中国光学,2019,12(4):888-895. doi: 10.3788/co.20191204.0888

    WANG X SH, GUO SH, XU X J, et al. Fast recognition and classification of tetrazole compounds based on laser-induced breakdown spectroscopy and Raman spectroscopy[J]. Chinese Optics, 2019, 12(4): 888-895. (in Chinese) doi: 10.3788/co.20191204.0888
    [7] 侯冠宇, 王平, 佟存柱. 激光诱导击穿光谱技术及应用研究进展[J]. 中国光学,2013,6(4):490-500.

    HOU G Y, WANG P, TONG C ZH. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4): 490-500. (in Chinese)
    [8] WANG Y, CHEN A M, ZHANG D, et al. Enhanced optical emission in laser-induced breakdown spectroscopy by combining femtosecond and nanosecond laser pulses[J]. Physics of Plasmas, 2020, 27(2): 023507. doi: 10.1063/1.5131772
    [9] GUO L B, HU W, ZHANG B Y, et al. Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement[J]. Optics Express, 2011, 19(15): 14067-14075. doi: 10.1364/OE.19.014067
    [10] LU Y, ZHOU Y S, QIU W, et al. Magnetic field enhancement for femtosecond-laser-ablation mass spectrometry in ambient environments[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(11): 2303-2306. doi: 10.1039/C5JA00225G
    [11] WANG Y R, JIANG Y H, HE X Y, et al. Triggered parallel discharge in laser-ablation spark-induced breakdown spectroscopy and studies on its analytical performance for aluminum and brass samples[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2018, 150: 9-17. doi: 10.1016/j.sab.2018.10.001
    [12] LIU L, LI S, HE X N, et al. Flame-enhanced laser-induced breakdown spectroscopy[J]. Optics Express, 2014, 22(7): 7686-7693. doi: 10.1364/OE.22.007686
    [13] YANG F, JIANG L, WANG S M, et al. Emission enhancement of femtosecond laser-induced breakdown spectroscopy by combining nanoparticle and dual-pulse on crystal SiO2[J]. Optics &Laser Technology, 2017, 93: 194-200.
    [14] YANG X Y, HAO ZH Q, SHEN M, et al. Simultaneous determination of La, Ce, Pr, and Nd elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy[J]. Talanta, 2017, 163: 127-131. doi: 10.1016/j.talanta.2016.10.094
    [15] 王旭朝, 郝中骐, 郭连波, 等. 基于共振激发的激光诱导击穿光谱技术研究进展[J]. 光谱学与光谱分析,2015,35(5):1159-1164.

    WANG X ZH, HAO ZH Q, GUO L B, et al. Research progress on laser-induced breakdown spectroscopy based on resonance excitation[J]. Spectroscopy and Spectral Analysis, 2015, 35(5): 1159-1164. (in Chinese)
    [16] SHEN X K, SUN J, LING H, et al. Spectroscopic study of laser-induced Al plasmas with cylindrical confinement[J]. Journal of Applied Physics, 2007, 102(9): 093301. doi: 10.1063/1.2801405
    [17] WANG Y, CHEN A M, SUI L ZH, et al. Two sequential enhancements of laser-induced Cu plasma with cylindrical cavity confinement[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(10): 1974-1977. doi: 10.1039/C6JA00260A
    [18] GAO X, LIU L, SONG CH, et al. The role of spatial confinement on nanosecond YAG laser-induced Cu plasma[J]. Journal of Physics D:Applied Physics, 2015, 48(17): 175205. doi: 10.1088/0022-3727/48/17/175205
    [19] SANGINÉS R, SOBRAL H, ALVAREZ-ZAUCO E. Emission enhancement in laser-produced plasmas on preheated targets[J]. Applied Physics B, 2012, 108(4): 867-873. doi: 10.1007/s00340-012-5130-6
    [20] LIU Y, TONG Y, LI S Y, et al. Effect of sample temperature on laser-induced semiconductor plasma spectroscopy[J]. Chinese Optics Letters, 2016, 14(12): 123001. doi: 10.3788/COL201614.123001
    [21] LIU Y, TONG Y, WANG Y, et al. Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. doi: 10.1088/2058-6272/aa8acc
    [22] 齐洪霞, 赵亮, 金川琳, 等. 样品温度对纳秒激光诱导铝等离子体光谱强度的影响[J]. 中国激光,2019,46(2):0211002. doi: 10.3788/CJL201946.0211002

    QI H X, ZHAO L, JIN CH L, et al. Influence of sample temperature on spectral intensity of nanosecond laser-induced aluminum plasma[J]. Chinese Journal of Lasers, 2019, 46(2): 0211002. (in Chinese) doi: 10.3788/CJL201946.0211002
    [23] SU X J, ZHOU W D, QIAN H G. Optical emission character of collinear dual pulse laser plasma with cylindrical cavity confinement[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(12): 2356-2361. doi: 10.1039/C4JA00296B
    [24] GUO L B, ZHANG B Y, HE X N, et al. Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation[J]. Optics Express, 2012, 20(2): 1436-1443. doi: 10.1364/OE.20.001436
    [25] HOU Z Y, WANG ZH, LIU J M, et al. Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy[J]. Optics Express, 2014, 22(11): 12909-12914. doi: 10.1364/OE.22.012909
    [26] SANGINÉS R, SOBRAL H, ALVAREZ-ZAUCO E. The effect of sample temperature on the emission line intensification mechanisms in orthogonal double-pulse laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 68: 40-45. doi: 10.1016/j.sab.2012.01.011
    [27] UJIHARA K. Reflectivity of metals at high temperatures[J]. Journal of Applied Physics, 1972, 43(5): 2376-2383. doi: 10.1063/1.1661506
    [28] ZHANG D, CHEN A M, WANG Q Y, et al. Influence of distance between sample surface and focal point on the expansion dynamics of laser-induced silicon plasma under different sample temperatures in air[J]. Optik, 2020, 202: 163511. doi: 10.1016/j.ijleo.2019.163511
    [29] 王秋云, 陈安民, 李苏宇, 等. 圆柱形空间约束腔直径和深度对激光诱导硅等离子体光谱的影响[J]. 光子学报,2018,47(8):0847007. doi: 10.3788/gzxb20184708.0847007

    WANG Q Y, CHEN A M, LI S Y, et al. Influence of diameter and depth on spatially confined laser-induced silicon plasma spectroscopy with cylindrical cavity[J]. Acta Photonica Sinica, 2018, 47(8): 0847007. (in Chinese) doi: 10.3788/gzxb20184708.0847007
    [30] FU Y T, HOU Z Y, WANG ZH. Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy[J]. Optics Express, 2016, 24(3): 3055-3066. doi: 10.1364/OE.24.003055
  • 加载中
图(8)
计量
  • 文章访问数:  1240
  • HTML全文浏览量:  443
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-08-12
  • 网络出版日期:  2021-02-05
  • 刊出日期:  2021-03-23

目录

    /

    返回文章
    返回