留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Line-scanning confocal microscopic imaging based on virtual structured modulation

ZHAO Jia-wang ZHANG Yun-hai WANG Fa-min MIAO Xin SHI Xin

赵家旺, 张运海, 王发民, 缪新, 施辛. 线扫描虚拟结构调制共聚焦显微成像[J]. 中国光学, 2021, 14(2): 431-445. doi: 10.37188/CO.2020-0120
引用本文: 赵家旺, 张运海, 王发民, 缪新, 施辛. 线扫描虚拟结构调制共聚焦显微成像[J]. 中国光学, 2021, 14(2): 431-445. doi: 10.37188/CO.2020-0120
ZHAO Jia-wang, ZHANG Yun-hai, WANG Fa-min, MIAO Xin, SHI Xin. Line-scanning confocal microscopic imaging based on virtual structured modulation[J]. Chinese Optics, 2021, 14(2): 431-445. doi: 10.37188/CO.2020-0120
Citation: ZHAO Jia-wang, ZHANG Yun-hai, WANG Fa-min, MIAO Xin, SHI Xin. Line-scanning confocal microscopic imaging based on virtual structured modulation[J]. Chinese Optics, 2021, 14(2): 431-445. doi: 10.37188/CO.2020-0120

线扫描虚拟结构调制共聚焦显微成像

doi: 10.37188/CO.2020-0120
详细信息
  • 中图分类号: O436.1; O439

Line-scanning confocal microscopic imaging based on virtual structured modulation

Funds: Supported by National Key R&D Program of China (No. 2017YFC0110303); Twenty Subsidized Projects of Colleges and Universities of Jinan (No. 2018GXRC018); Provincial Natural Science Foundation of Shandong, China (No. ZR2019BF012); People’s Livelihood Foundation of Suzhou (No. SS201643)
More Information
    Author Bio:

    Zhao Jia-wang (1996—), male, born in Anqing City, Anhui Province. He is a master degree candidate. He obtained his bachelor's degree from Anhui University in 2018. Now he is studying in the School of Biomedical Engineering, University of Science and Technology of China for the master degree of optical engineering. He is mainly engaged in the research of super-resolution microscopic optics. E-mail: 1762975674@qq.com

    Zhang Yun-hai (1975—), male, born in Xiangyang City, Hubei Province. He is a doctor, professor and doctoral supervisor. He obtained his bachelor's degree from Nanjing University of Aeronautics and Astronautics in 1998 and his doctor's degree from the same university in 2006. Currently he is working at Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences. He is the deputy director of Jiangsu Key Laboratory of Medical Optics, mainly engaged in the research of laser-scanning confocal imaging and super-resolution microscopic optics. E-mail: zhangyh@sibet.ac.cn

    Corresponding author: zhangyh@sibet.ac.cn
  • 摘要: 共聚焦显微镜的分辨率受光学衍射极限限制。已经证明结构调制在共聚焦显微镜中可以实现超分辨成像,但是由于图像采集速度有限,导致该方法的实际应用具有局限性。为了提高系统的成像速度,本文介绍了一种将线扫描应用到结构调制共焦显微镜的方法。利用柱面透镜产生线照明,余弦数字掩模用于探测端的解扫描线斑图像调制,与虚拟结构探测方法不同之处在于无需后续的移频过程。为了提高各项同性分辨率,采用样本转动的方式实现0°、90°两角度扫描。仿真和实验结果表明,相干传递函数频谱宽度增大,成像分辨率达到传统共聚焦显微镜的1.4倍。与采集单点图像的结构调制共焦显微镜相比,图像采集速度提高了104倍。
  • 图  1  反射式共聚焦系统示意图

    Figure  1.  Schematic of reflective confocal microscope system

    图  2  IPSF理论仿真结果。(a)普通线扫描共聚焦显微镜的IPSF,(b) IPSF的傅立叶变换,(c) 图(a)中XY方向上的归一化强度分布

    Figure  2.  Theoretical simulation results of IPSF. (a) IPSF of traditional line-scanning confocal microscope; (b) Fourier transform of IPSF; (c) normalized intensity distributions of (a) in the X and Y directions respectively

    图  3  系统CTF仿真。(a) 传统线扫描共聚焦(CLSM) 的CTF,(b) 线扫描结构调制共聚焦(LVSM)的CTF,(c) 黑色曲线为(a)中Y方向归一化频率分布(WM),蓝色和红色曲线分别为(a)、(b)中X方向归一化频率分布(CLSM、LVSM)

    Figure  3.  System CTF simulation. (a) CTF of traditional confocal line scanning microscopy (for CLSM); (b) CTF of line-scanning confocal microscopy with structure modulation (for LVSM); (c) black curve is the normalized frequency distribution along the Y direction in (a) (for WM), and blue and red curves are the normalized frequency distributions along the X direction in (a) and (b), respectively (for CLSM and LVSM)

    图  4  图像重建过程流程图

    Figure  4.  Flow chart of image reconstruction

    图  5  线扫描共聚焦虚拟结构调制仿真(LVSM)。(a)仿真使用的辐条状样品。(b)普通共聚焦图像。(c)取0°、90°两个扫描方向,结合对应方向上的结构检测函数重建后图像。(d)、(e)、(f)分别是(a)、(b)、(c)的傅立叶变换,即对应的频域图像

    Figure  5.  Simulation of line-scanning confocal microscopy with virtual structure modulation (for LVSM). (a) Spoke-like sample for simulation; (b) image of conventional confocal microscopy; (c) image reconstructed with the structure detection functions in the two scanning directions of 0° and 90°; (d), (e) and (f) are the Fourier transforms i.e. frequency domain images of (a), (b) and (c), respectively

    图  6  实验系统示意图

    Figure  6.  Schematic diagram of experiment setup

    图  7  分辨率测试目标的线扫描虚拟结构调制共聚焦实现。(a)扫描方向为0°时,采集的第20、205、360、490条线斑图像。(b)扫描方向为90°时,采集的第20、205、360、490条线斑图像。(c)扫描方向为90°时,常规线扫描共聚焦获得的分辨率测试靶图片。(d) LVSM超分辨重建后图像

    Figure  7.  Implementation of line-scanning confocal virtual structure modulation imaging on the resolution test target. (a) The 20th, 205th, 360th and 490th line spot images collected in the 0° scanning direction; (b) the 20th, 205th, 360th and 490th line spot images collected in the 90° scanning direction; (c) the image of resolution test target obtained by conventional line-scanning confocal method in the 90° scanning direction; (d) reconstructed super-resolution image by LVSM

    图  8  常规线扫描共聚焦和线扫描虚拟结构调制共聚焦在特定区域的归一化强度曲线。图7(c)7(d)中(a)蓝色线段标记区域(b)黄色线段标记区域及(c)绿色线段标记区域的归一化强度分布对比

    Figure  8.  Normalized intensity curves of conventional line-scanning confocal microscope and line-scanning confocal microscope with virtual structure modulation in specified areas. Comparison between the normalized intensities of the area marked by (a) blue curve, (b) yellow curve and (c) green curve in Fig. 7(c) and Fig. 7(d)

  • [1] HELL S W. Microscopy and its focal switch[J]. Nature Methods, 2009, 6(1): 24-32. doi: 10.1038/nmeth.1291
    [2] WANG X, LIU H Y, LU X CH, et al. Cell imaging by holographic lens-free microscopy[J]. Optics and Precision Engineering, 2020, 28(8): 1644-1650. (in Chinese)
    [3] XU B T, YANG X B, LIU J L, et al. Image correction for high speed scanning confocal laser endomicroscopy[J]. Optics and Precision Engineering, 2020, 28(1): 60-68. (in Chinese) doi: 10.3788/OPE.20202801.0060
    [4] MIAO X, ZHANG Y H, HUANG W. Image brightness adaptive adjustment during skin imaging by reflectance confocal microscopy[J]. Optics and Precision Engineering, 2019, 27(6): 1270-1276. (in Chinese) doi: 10.3788/OPE.20192706.1270
    [5] WANG F M, XIAO Y, ZHAO M M, et al. 3D resolution improvement in confocal microscopy by mirror refection interference and fluorescence emission difference[J]. Optics and Lasers in Engineering, 2020, 134: 106198. doi: 10.1016/j.optlaseng.2020.106198
    [6] WILSON T, CARLINI A R. Size of the detector in confocal imaging systems[J]. Optics Letters, 1987, 12(4): 227-229. doi: 10.1364/OL.12.000227
    [7] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.
    [8] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87. doi: 10.1046/j.1365-2818.2000.00710.x
    [9] SALES T R M, MORRIS G M. Fundamental limits of optical superresolution[J]. Optics Letters, 1997, 22(9): 582-584. doi: 10.1364/OL.22.000582
    [10] RUST M J, BATES M, ZHUANG X W, et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796. doi: 10.1038/nmeth929
    [11] HESS S T, GIRIRAJAN T P K, MASON M D. Ultra-high resolution imaging by fluorescence Photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11): 4258-4272. doi: 10.1529/biophysj.106.091116
    [12] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086. doi: 10.1073/pnas.0406877102
    [13] NI H, ZOU L M, GUO Q Y, et al. Lateral resolution enhancement of confocal microscopy based on structured detection method with spatial light modulator[J]. Optics Express, 2017, 25(3): 2872-2882. doi: 10.1364/OE.25.002872
    [14] LU J, MIN W, CONCHELLO J A, et al. Super-resolution laser scanning microscopy through spatiotemporal modulation[J]. Nano Letters, 2009, 9(11): 3883-3889. doi: 10.1021/nl902087d
    [15] LU R W, WANG B Q, ZHANG Q X, et al. Super-resolution scanning laser microscopy through virtually structured detection[J]. Biomedical Optics Express, 2013, 4(9): 1673-1682. doi: 10.1364/BOE.4.001673
    [16] ZHI Y A, LU R W, WANG B Q, et al. Rapid super-resolution line-scanning microscopy through virtually structured detection[J]. Optics Letters, 2015, 40(8): 1683-1686. doi: 10.1364/OL.40.001683
    [17] WANG B K, ZOU L M, ZHANG S, et al. Super-resolution confocal microscopy with structured detection[J]. Optics Communications, 2016, 381: 277-281. doi: 10.1016/j.optcom.2016.07.005
    [18] WOLLESCHENSKY R, ZIMMERMANN B, KEMPE M, et al. High-speed confocal fluorescence imaging with a novel line scanning microscope[J]. Journal of Biomedical Optics, 2006, 11(6): 064011. doi: 10.1117/1.2402110
    [19] GUSTAFSSON M G L, SHAO L, CARLTON P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 4957-4970. doi: 10.1529/biophysj.107.120345
  • 加载中
图(8)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  113
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-14
  • 修回日期:  2020-08-13
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回