Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics
doi: 10.37188/CO.2020-0121
-
摘要: 准分布式光纤传感系统在土木工程、能源勘测、航空航天、国防、化工等领域一直发挥着不可替代的重要作用。以微波光子学为基础的准分布式光纤传感解调技术被广泛应用于光纤复用系统的快速、高精度的信号解调与传感器定位。与传统的光学波长解调方案相比,该技术大幅提高了系统的解调速率,弥补了传统解调方法在传感器定位方面的缺陷。本文主要介绍了近年来国内外在基于微波光子学的准分布式光纤传感解调领域的研究进展,从光纤光栅准分布式传感系统和光纤法布里-珀罗准分布式传感系统两方面入手,对比分析了现有的数种微波解调光纤准分布式系统的优缺点,并对基于微波光子学的准分布式光纤传感解调技术的未来发展方向进行了总结与展望。Abstract: Quasi-distributed fiber sensing systems play an important role in the fields of civil engineering, energy surveying, aerospace, national defense, chemicals, etc. Interrogation technology for quasi-distributed fiber sensing systems based on microwave photonics is widely used in high-speed and high-precision signal demodulation and sensor positioning in optical fiber multiplexing systems. Compared to conventional optical wavelength interrogation, this technology greatly improves system demodulation rate and compensates for the defects of traditional sensor positioning methods. This paper introduces the recent research progress of quasi-distributed fiber sensing interrogation technology based on microwave photonics; compares and analyzes the advantages and disadvantages of several existing microwave demodulation systems from the perspective of their fiber grating quasi-distributed sensing and fiber Fabry-Perot quasi-distributed sensing systems, respectively; and provides a summary of the prospective direction of future research in quasi-distributed fiber sensing interrogation technology based on microwave photonics.
-
图 5 基于双Sagnac环和差分滤波的WDM准分布式传感微波解调系统。(a)系统结构示意图;(b)双Sagnac环光谱图;(c)由频域响应逆傅里叶变换得到的时域响应谱[27]。
Figure 5. WDM quasi-distributed sensing microwave demodulation system based on double Sagnac loops and differential filtering. (a) System structure diagram; (b) Spectra of double Sagnac loops; (c) Time-domain response spectrum obtained from frequency response IFFT[27]
表 1 Comparison of different microwave demodulation concepts for FBG quasi-distributed system
Table 1. Comparison of different microwave demodulation concepts for FBG quasi-distributed system
Demodulation
conceptMultiplexing
capacity/piece/mSpatial resolution/m Demodulation rate Other characteristics Microwave photonic filter structure[23] 500 (experiment) 0.2 Limited by the VNA scanning rate Capable of demodulating the dense systems with a spacing less than coherence length Microwave photonic filter structure + wide-spectrum differential filtering[27] 19400 (theory) 0.1 Limited by the VNA scanning rate Suitable for the demodulation of WDM system; immune to power fluctuations Microwave photonic heterodyne +DCF-SMF dual-channel demodulation[33] 105 (experiment) 1 80 kHz Dynamic demodulation; wavelength demodulation accuracy: 6.96 pm Incoherent optical frequency domain reflection from chaotic sources[34] 3640 (experiment) 0.1 Limited by the wavelength scanning rate of light source Low coherent noise; capable of demodulating a large-scale multiplexing system Optoelectronic oscillator structure[39] 62 (theory) 1 0.61 s Signal-to-noise ratio > 35 dB; frequency instability < 28 kHz -
[1] KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8): 1442-1463. doi: 10.1109/50.618377 [2] ZHAO CH L, YANG X F, DEMOKAN M S, et al. Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating[J]. Journal of Lightwave Technology, 2006, 24(2): 879-883. doi: 10.1109/JLT.2005.862471 [3] MAJUMDER M, GANGOPADHYAY T K, CHAKRABORTY A K, et al. Fibre Bragg gratings in structural health monitoring-present status and applications[J]. Sensors and Actuators A:Physical, 2008, 147(1): 150-164. doi: 10.1016/j.sna.2008.04.008 [4] DAI Y B, LIU Y J, LENG J S, et al. A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring[J]. Optics and Lasers in Engineering, 2009, 47(10): 1028-1033. doi: 10.1016/j.optlaseng.2009.05.012 [5] MIHAILOV S J. Fiber Bragg grating sensors for harsh environments[J]. Sensors, 2012, 12(2): 1898-1918. doi: 10.3390/s120201898 [6] LAFFONT G, COTILLARD R, FERDINAND P. Multiplexed regenerated fiber Bragg gratings for high-temperature measurement[J]. Measurement Science and Technology, 2013, 24(9): 094010. doi: 10.1088/0957-0233/24/9/094010 [7] WU W. Research and application of large capacity fiber grating sensor demodulation system[D]. Wuhan: Wuhan University of Technology, 2009: 3-4. (in Chinese). [8] LIU SH, HAN X Y, XIONG Y C, et al. Distributed vibration detection system based on weak fiber Bragg grating array[J]. Chinese Journal of Lasers, 2017, 44(2): 0210001. (in Chinese) doi: 10.3788/CJL201744.0210001 [9] LI Y, XU M, WANG Q Y, et al. Strain sensing properties of UV-written fiber grating[J]. Chinese Journal of Luminescence, 2000, 21(1): 61-63. (in Chinese) doi: 10.3321/j.issn:1000-7032.2000.01.014 [10] ZHANG ZH Y. One-piece flow target type based on fiber Bragg grating sensing technology[J]. Chinese Journal of Luminescence, 2020, 41(2): 217-223. (in Chinese) [11] LI L B. Research on capillary-based fiber F-P vibration sensor[D]. Wuhan: Huazhong University of Science and Technology, 2014: 6-7. (in Chinese). [12] CAI N. The simulation and demodulation of optical fiber FP sensing structure[D]. Wuhan: Huazhong University of Science and Technology, 2019: 2-5. (in Chinese). [13] CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330. doi: 10.1038/nphoton.2007.89 [14] YAO J P. Arbitrary waveform generation[J]. Nature Photonics, 2010, 4(2): 79-80. doi: 10.1038/nphoton.2009.276 [15] ZHENG D, ZOU X H, PAN W, et al. Advances of optical fiber sensing interrogation techniques based on microwave photonics[J]. Study on Optical Communications, 2018, 44(6): 21-30. (in Chinese) [16] SAUER M, KOBYAKOV A, GEORGE J. Radio over fiber for Picocellular network architectures[J]. Journal of Lightwave Technology, 2007, 25(11): 3301-3320. doi: 10.1109/JLT.2007.906822 [17] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341-345. doi: 10.1038/nature13078 [18] ZOU X H, BAI W L, CHEN W, et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing[J]. Journal of Lightwave Technology, 2018, 36(19): 4337-4346. doi: 10.1109/JLT.2018.2813663 [19] RICCHIUTI A L, BARRERA D, SALES S, et al. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques[J]. Optics Express, 2013, 21(23): 28175-28181. doi: 10.1364/OE.21.028175 [20] RICCHIUTI A L, HERVÁS J, BARRERA D, et al. Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor[J]. IEEE Photonics Journal, 2014, 6(6): 5501410. [21] XIA L, CHENG R, LI W, et al. Identical FBG-based quasi-distributed sensing by monitoring the microwave responses[J]. IEEE Photonics Technology Letters, 2015, 27(3): 323-325. doi: 10.1109/LPT.2014.2370650 [22] WERZINGER S, BERGDOLT S, ENGELBRECHT R, et al. Quasi-distributed fiber Bragg grating sensing using stepped incoherent optical frequency domain Reflectometry[J]. Journal of Lightwave Technology, 2016, 34(22): 5270-5277. doi: 10.1109/JLT.2016.2614581 [23] HERVÁS J, BARRERA D, MADRIGAL J, et al. Microwave photonics filtering interrogation technique under coherent regime for hot spot detection on a weak FBGs array[J]. Journal of Lightwave Technology, 2018, 36(4): 1039-1045. doi: 10.1109/JLT.2018.2793161 [24] CHENG R, XIA L, SIMA C T, et al. Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis[J]. Optics Express, 2016, 24(3): 2466-2484. doi: 10.1364/OE.24.002466 [25] HERVÁS J, FERNÁNDEZ-POUSA C R, BARRERA D, et al. An interrogation technique of FBG cascade sensors using wavelength to radio-frequency delay mapping[J]. Journal of Lightwave Technology, 2015, 33(11): 2222-2227. doi: 10.1109/JLT.2015.2409318 [26] ZHENG D, MADRIGAL J, BARRERA D, et al. Microwave photonic filtering for interrogating FBG-based multicore fiber curvature sensor[J]. IEEE Photonics Technology Letters, 2017, 29(20): 1707-1710. doi: 10.1109/LPT.2017.2742579 [27] WU N SH, XIA L, SONG Y M, et al. Simultaneous differential interrogation for Multiple FBGs based on Crossed Sagnac loops and microwave network[J]. Journal of Lightwave Technology, 2019, 37(23): 5953-5960. doi: 10.1109/JLT.2019.2944401 [28] ZHOU L. Research on high-speed demodulation of weak grating array based on microwave photonics and chromatic dispersion[D]. Wuhan: Wuhan University of Technology, 2018: 16-18. (in Chinese). [29] DONG X Y, SHAO L Y, FU H Y, et al. Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement[J]. Optics Letters, 2008, 33(5): 482-484. doi: 10.1364/OL.33.000482 [30] CHENG R, XIA L, YAN J, et al. Radio frequency FBG-based interferometer for remote adaptive strain monitoring[J]. IEEE Photonics Technology Letters, 2015, 27(15): 1577-1580. doi: 10.1109/LPT.2015.2406112 [31] WANG Y P, ZHANG J J, COUTINHO O, et al. Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform[J]. Optics Letters, 2015, 40(21): 4923-4926. doi: 10.1364/OL.40.004923 [32] ZHOU L, LI ZH Y, XIANG N, et al. High-speed demodulation of weak fiber Bragg gratings based on microwave photonics and chromatic dispersion[J]. Optics Letters, 2018, 43(11): 2430-2433. doi: 10.1364/OL.43.002430 [33] LIANG X, XIANG N, LI ZH Y, et al. Precision dynamic sensing with ultra-weak fiber Bragg grating arrays by wavelength to frequency transform[J]. Journal of Lightwave Technology, 2019, 37(14): 3526-3531. doi: 10.1109/JLT.2019.2917602 [34] WANG J Q, LI ZH Y, YANG Q, et al. Interrogation of a large-capacity densely spaced fiber Bragg grating array using chaos-based incoherent-optical frequency domain reflectometry[J]. Optics Letters, 2019, 44(21): 5202-5205. doi: 10.1364/OL.44.005202 [35] YANG Q, WANG J Q, FU X L, et al.. High-spatial resolution demodulation of weak FBGs based on incoherent optical frequency domain Reflectometry using a chaotic laser[C]. Proceedings of 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2019: 994-998. [36] YANG Y G, WANG M G, SHEN Y, et al. Refractive index and temperature sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating[J]. IEEE Photonics Journal, 2018, 10(1): 6800309. [37] ZHANG N H, WU B L, WANG M G, et al. High-sensitivity sensing for relative humidity and temperature based on an optoelectronic oscillator using a polyvinyl alcohol-fiber Bragg grating-Fabry Perot filter[J]. IEEE Access, 2019, 7: 148756-148763. doi: 10.1109/ACCESS.2019.2946991 [38] XU Z W, SHU X W, FU H Y. Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop[J]. Optics Express, 2019, 27(16): 23274-23281. doi: 10.1364/OE.27.023274 [39] WANG W X, LIU Y, DU X W, et al. Ultra-stable and real-time Demultiplexing system of strong fiber Bragg grating sensors based on low-frequency optoelectronic oscillator[J]. Journal of Lightwave Technology, 2020, 38(4): 981-988. doi: 10.1109/JLT.2019.2949682 [40] HUANG J, HUA L, LAN X W, et al. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing[J]. Optics Express, 2013, 21(15): 18152-18159. doi: 10.1364/OE.21.018152 [41] HUANG J, LAN X W, LUO M, et al. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry[J]. Optics Express, 2014, 22(15): 18757-18769. doi: 10.1364/OE.22.018757 [42] HUA L W, SONG Y, HUANG J, et al. Femtosecond laser fabricated multimode fiber sensors interrogated by optical-carrier-based microwave interferometry technique for distributed strain sensing[J]. Proceedings of SPIE, 2016, 9754: 97540V. [43] BENÍTEZ J, BOLEA M, MORA J. Demonstration of multiplexed sensor system combining low coherence interferometry and microwave photonics[J]. Optics Express, 2017, 25(11): 12182-12187. doi: 10.1364/OE.25.012182 [44] HUA L W, SONG Y, CHENG B K, et al. Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry[J]. Optics Express, 2017, 25(25): 31362-31376. doi: 10.1364/OE.25.031362 [45] HUA L W. Microwave photonics for distributed sensing[D]. Clemson: Clemson University, 2017: 88-97. [46] COELHO L C C, DE ALMEIDA J M M M, MOAYYED H, et al. Multiplexing of surface Plasmon resonance sensing devices on etched single-mode fiber[J]. Journal of Lightwave Technology, 2015, 33(2): 432-438. doi: 10.1109/JLT.2014.2386141 [47] LIU Q, JING ZH G, LIU Y Y, et al. Multiplexing fiber-optic Fabry-Perot acoustic sensors using self-calibrating wavelength shifting interferometry[J]. Optics Express, 2019, 27(26): 38191-38203. doi: 10.1364/OE.381197