留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

注入功率比可调控的双泵浦复合腔501 nm青光激光器

王兰 金光勇 董渊 王超

王兰, 金光勇, 董渊, 王超. 注入功率比可调控的双泵浦复合腔501 nm青光激光器[J]. 中国光学(中英文), 2021, 14(2): 329-335. doi: 10.37188/CO.2020-0161
引用本文: 王兰, 金光勇, 董渊, 王超. 注入功率比可调控的双泵浦复合腔501 nm青光激光器[J]. 中国光学(中英文), 2021, 14(2): 329-335. doi: 10.37188/CO.2020-0161
WANG Lan, JIN Guang Yong, DONG Yuan, WANG Chao. Double pumped composite cavity 501 nm cyan laser with tunable injection power ratio[J]. Chinese Optics, 2021, 14(2): 329-335. doi: 10.37188/CO.2020-0161
Citation: WANG Lan, JIN Guang Yong, DONG Yuan, WANG Chao. Double pumped composite cavity 501 nm cyan laser with tunable injection power ratio[J]. Chinese Optics, 2021, 14(2): 329-335. doi: 10.37188/CO.2020-0161

注入功率比可调控的双泵浦复合腔501 nm青光激光器

详细信息
    作者简介:

    王 兰(1984—),女,吉林长春人,博士研究生,工程师,2011年于长春理工大学获得硕士学位,现就读于长春理工大学,主要从事激光物理与新型固体激光器的研究,任职于吉林省计量科学研究院,吉林省计量测试仪器与技术重点实验室,主要从事计量校准、检定方面的工作。E-mail:86830639@qq.com

    金光勇(1971—),男,吉林长春人,研究员,博士生导师,2003年于长春理工大学获得工学博士学位,主要从事激光及其物质相互作用、激光物理与新型固体激光器方面的研究。E-mail:jgycust@163.com

  • 中图分类号: O439

Double pumped composite cavity 501 nm cyan laser with tunable injection power ratio

More Information
  • 摘要: 为了探究提高500 nm附近激光高准确度应用的理论和技术依据,本文采用双泵浦源复合腔结合非线性和频变换,实现腔内两种波长基频光无增益竞争,可提高基频光输出功率,同时在复合腔内进行多次非线性频率变换,通过调控基频光注入功率比,使腔内光子数配比达到1∶1,从而有效提高了光-光转换效率及和频输出功率。对首次建立的理论模型进行了实验验证,分别采用Nd:YAG和Nd:YVO4作为增益介质获取946 nm和1064 nm基频光输出,LBO为和频晶体;通过双泵浦源结构实现946 nm和1064 nm基频光无增益竞争,调节注入LBO光功率,对比注入功率比不同时的和频转换效率及输出功率,最终在基频光注入功率比为1.48∶1(即腔内光子数配比为1∶1)时获得最大输出功率923 mW的501 nm青光。

     

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of experimental device

    图 2  946 nm和1064 nm基频光同时输出光谱图

    Figure 2.  Spectrum of 946 nm and 1064 nm fundamental frequency laser output at the same time

    图 3  946 nm和1064 nm输出功率与泵浦电流的关系

    Figure 3.  Relationships between pump current and output power at 946 nm and 1064 nm

    图 4  946 nm和1064 nm腔内功率与泵浦电流关系

    Figure 4.  Relationships between the pump current and the intracavity power at 946 nm and 1064 nm

    图 5  946 nm和1064 nm泵浦功率与501 nm输出功率关系

    Figure 5.  Relationship between pump power at 946 nm and 1064 nm and output power at 501 nm

    图 6  501 nm输出功率与946 nm和1064 nm注入功率比的关系

    Figure 6.  Relationship between output power at 501 nm and injection power ratio of 946 nm and 1064 nm

    图 7  501 nm光谱图和光斑图。(a)光谱图;(b) 2D光斑;(c) 3D光斑

    Figure 7.  Spectrum and spot at 501 nm. (a) Spectrogram; (b) 2D spot; (c) 3D spot

  • [1] 谢仕永, 王彩丽, 薄勇, 等. 高功率准连续微秒脉冲钠导星激光[J]. 光学 精密工程,2017,25(10):2661-2667. doi: 10.3788/OPE.20172510.2661

    XIE SH Y, WANG C L, BO Y, et al. High-power quasi-continuous microsecond pulse sodium guide star laser[J]. Optics and Precision Engineering, 2017, 25(10): 2661-2667. (in Chinese) doi: 10.3788/OPE.20172510.2661
    [2] 吴春婷, 常奥磊, 温雅, 等. 单掺Nd3+双波长全固态激光器研究进展[J]. 发光学报,2020,41(4):414-428. doi: 10.3788/fgxb20204104.0414

    WU CH T, CHANG A L, WEN Y, et al. Research progress of Nd3+-doped dual-wavelength all-solid-state lasers[J]. Chinese Journal of Luminescence, 2020, 41(4): 414-428. (in Chinese) doi: 10.3788/fgxb20204104.0414
    [3] 黄元庆, 杜晖. 全固化SHG蓝光激光器的研究[J]. 发光学报,1998,19(1):45-49. doi: 10.3321/j.issn:1000-7032.1998.01.009

    HUANG Y Q, DU H. Study of all solid state SHG blue laser[J]. Chinese Journal of Luminescence, 1998, 19(1): 45-49. (in Chinese) doi: 10.3321/j.issn:1000-7032.1998.01.009
    [4] LÜ Y F, ZHANG X H, XIA J, et al. Diode-pumped Nd:LuVO4-Nd:YVO4 laser at 492 nm with intracavity sum-frequency-mixing in LiB3O6[J]. Laser Physics, 2010, 20(9): 1810-1813. doi: 10.1134/S1054660X10170081
    [5] HERAULT E, BALEMBOIS F, GEORGES P, et al. 1064 nm Nd:YVO4 laser intracavity pumped at 912 nm and sum-frequency mixing for an emission at 491 nm[J]. Optics Letters, 2008, 33(14): 1632-1634. doi: 10.1364/OL.33.001632
    [6] 王君光, 李永亮, 田迎华, 等. 全固态腔内和频488 nm连续蓝光激光器[J]. 中国激光,2010,37(7):1669-1672. doi: 10.3788/CJL20103707.1669

    WANG J G, LI Y L, TIAN Y H, et al. All-solid-state continuous-wave all-intracavity sum-frequency mixing blue laser at 488 nm[J]. Chinese Journal of Lasers, 2010, 37(7): 1669-1672. (in Chinese) doi: 10.3788/CJL20103707.1669
    [7] 姜忠明, 陈殿仁. 全固态复合内腔和频570 nm连续波黄光激光器[J]. 光学 精密工程,2010,18(4):805-808.

    JIANG ZH M, CHEN D R. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency yellow laser at 570 nm[J]. Optics and Precision Engineering, 2010, 18(4): 805-808. (in Chinese)
    [8] 范嗣强, 李麒麟, 路永乐. 基于LD双端面泵浦的Nd:YAG高效率倍频激光器[J]. 发光学报,2018,39(6):830-837. doi: 10.3788/fgxb20183906.0830

    FAN S Q, LI Q L, LU Y L. Experimental study on high efficiency double frequency laser with LD dual pump Nd:YAG[J]. Chinese Journal of Luminescence, 2018, 39(6): 830-837. (in Chinese) doi: 10.3788/fgxb20183906.0830
    [9] 谢仕永, 王久旺, 孙勇, 等. 垂直腔面发射激光端面泵浦的高能量调Q Nd:YAG激光[J]. 光学 精密工程,2020,28(3):558-564. doi: 10.3788/OPE.20202803.0558

    XIE SH Y, WANG J W, SUN Y, et al. VCSEL end-pumped high-energy Q-switched Nd:YAG laser[J]. Optics and Precision Engineering, 2020, 28(3): 558-564. (in Chinese) doi: 10.3788/OPE.20202803.0558
    [10] JACQUEMET M, DRUON F, BALEMBOIS F, et al. Single-frequency operation of diode-pumped Yb: KYW at 1003.4 nm and 501.7 nm by intracavity second harmonic generation[J]. Applied Physics B, 2006, 85(1): 69-72.
    [11] HAO E J, LI T, WANG Z D. High power single-longitudinal-mode cyan laser at 500.8 nm[J]. Laser Physics, 2012, 22(5): 900-903. doi: 10.1134/S1054660X12050118
    [12] 付喜宏, 彭航宇, 单肖楠, 等. LD抽运Nd:YAG/Nd:YVO4腔内和频500.9 nm激光器[J]. 中国激光,2013,40(6):0602012. doi: 10.3788/CJL201340.0602012

    FU X H, PENG H Y, SHAN X N, et al. Diode-pumped Nd:YAG/Nd:YVO4 intracavity sum-frequency mixing laser at 500.9 nm[J]. Chinese Journal of Lasers, 2013, 40(6): 0602012. (in Chinese) doi: 10.3788/CJL201340.0602012
    [13] TAWFIEQ M, JENSEN O B, HANSEN A K, et al. Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers[J]. Optics Communications, 2015, 339: 137-140. doi: 10.1016/j.optcom.2014.11.078
    [14] LAN R J, CHENG H, YANG G. Continuous wave Yb: YCOB cyan lasers with KTP as the sum-frequency converter[J]. Optics Communications, 2015, 357: 169-171. doi: 10.1016/j.optcom.2015.09.008
    [15] 姚建铨, 徐德刚. 全固态激光及非线性光学频率变换技术[M]. 北京: 科学出版社, 2007: 652-706.

    YAO J Q, XU D G. All Solid State Laser and Nonlinear Optical Frequency Conversion Technology[M]. Beijing: Science Press, 2007: 652-706.
    [16] SVELTO O. Principles of Lasers[M]. HANNA D C, Trans. New York: Plenum Press, 1976: 255-256.
    [17] 于永吉. 447 nm蓝光激光技术研究[D]. 长春: 长春理工大学, 2010: 25-40.

    YU Y J. Investigations on 447 nm blue laser technology[D]. Changchun: Changchun University of Science and Technology, 2010: 25-40.
    [18] KOECHNER W. Solid-State Laser Engineering[M]. 5th ed. Beijing: World Publishing Corporation, 2005: 79-97.
  • 加载中
图(7)
计量
  • 文章访问数:  1302
  • HTML全文浏览量:  398
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2020-10-09
  • 网络出版日期:  2021-03-09
  • 刊出日期:  2021-03-23

目录

    /

    返回文章
    返回